File size: 8,799 Bytes
f61d311 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
from flask import Flask, request
import tensorflow as tf
from datetime import datetime, timedelta
import logging
import requests
import requests_cache
import pandas as pd
import json
import numpy as np
import pickle
import math
import pytz
from flask_cors import CORS, cross_origin
session = requests_cache.CachedSession('requests-cache')
app = Flask(__name__)
cors = CORS(app)
app.config['CORS_HEADERS'] = 'Content-Type'
app.logger.setLevel(logging.INFO)
DATE_FORMAT = "%Y-%m-%d %H:%M:%S"
API_KEY = "e1f10a1e78da46f5b10a1e78da96f525"
BASE_URL = "https://api.weather.com/v1/location/KDCA:9:US/observations/historical.json?apiKey={api_key}&units=e&startDate={start_date}&endDate={end_date}"
model = tf.keras.models.load_model('/app/model', compile=False)
scaler = pickle.load(open('./model/scaler.pkl','rb'))
cols_to_scale = ["pressure", "wspd","heat_index","dewPt", "rh", "vis", "wc", "wdir_degree", "clds_ordinal",
"day_sin", "day_cos", "year_sin", "year_cos", "wdir_sin", "wdir_cos"]
def get_NaN_counts(df):
nan_counts = df.isna().sum()
return pd.concat([nan_counts, ((nan_counts/len(df))*100).round(2)],
axis=1,
keys=["NaN count", "Percentage"])
def clds_to_ordinal(row):
mapping = {
"SKC": 0,
"CLR": 0,
"FEW": 1,
"SCT": 2,
"BKN": 3,
"OVC": 4,
"VV": 5
}
clds = row["clds"]
if pd.isnull(clds):
return np.NaN
return mapping[clds]
def clean_wspd(row):
if row["wdir_cardinal"] == "CALM":
return 0
return row["wspd"]
def restrict_wspd(row):
if row["wspd"] < 0:
return 0
return row["wspd"]
def restrict_rh(row):
if row["rh"] < 0:
return 0
if row["rh"] > 100:
return 100
return row["rh"]
def clean_wdir(row):
if row["wdir_cardinal"] == "CALM":
return 0
return row["wdir"]
def wdir_cardinal_to_deg(row):
wdir = row["wdir"]
if not pd.isnull(wdir):
return wdir
cardinal_directions = {
'N': 0,
'NNE': 22.5,
'NE': 45,
'ENE': 67.5,
'E': 90,
'ESE': 112.5,
'SE': 135,
'SSE': 157.5,
'S': 180,
'SSW': 202.5,
'SW': 225,
'WSW': 247.5,
'W': 270,
'WNW': 292.5,
'NW': 315,
'NNW': 337.5,
'CALM': 0,
'VAR': -1
}
wdir_cardinal = row["wdir_cardinal"]
return cardinal_directions[wdir_cardinal] if wdir_cardinal in cardinal_directions else np.NaN
def prepare_dataframe(_df, start_timestamp, end_timestamp):
dates_df = pd.DataFrame()
dates_df["obs_timestamp"] = pd.date_range(start_timestamp, end_timestamp, freq="H")
_df = dates_df.merge(_df, how='left', on='obs_timestamp')
_df = _df.astype(
{
'temp': 'float',
'pressure': 'float',
'wspd': 'float',
'heat_index': 'float'
},
)
_df["wdir_cardinal"].fillna(method="bfill", inplace=True)
_df["wdir_degree"] = _df.apply(wdir_cardinal_to_deg, axis=1)
_df["clds_ordinal"] = _df.apply(clds_to_ordinal, axis=1)
_df["temp"].interpolate("polynomial", order=2, inplace=True)
_df["pressure"].interpolate("polynomial", order=2, inplace=True)
_df["heat_index"].interpolate("polynomial", order=2, inplace=True)
_df["wdir"].fillna(method="bfill", inplace=True)
_df["wdir"] = _df.apply(clean_wdir, axis=1)
_df["wspd"] = _df.apply(clean_wspd, axis=1)
_df["wspd"].interpolate("polynomial", order=2, inplace=True)
_df["wspd"] = _df.apply(restrict_wspd, axis=1)
_df["clds"].fillna(method="bfill", inplace=True)
_df["clds_ordinal"].interpolate("linear", inplace=True)
_df["dewPt"].interpolate("polynomial", order=2, inplace=True)
_df["rh"].interpolate("polynomial", order=2, inplace=True)
_df["rh"] = _df.apply(restrict_rh, axis=1)
_df["wc"].interpolate("polynomial", order=2, inplace=True)
_df["vis"].fillna(method="bfill", inplace=True)
_df.drop(["wdir", "wdir_cardinal", "clds"], axis=1, inplace=True)
_df = _df.dropna()
_df = _df.sort_values(by=['obs_timestamp'])
date_time = _df.pop('obs_timestamp')
timestamp_s = date_time.map(pd.Timestamp.timestamp)
day = 24*60*60
year = (365.2425)*day
_df['day_sin'] = np.sin(timestamp_s * (2 * np.pi / day))
_df['day_cos'] = np.cos(timestamp_s * (2 * np.pi / day))
_df['year_sin'] = np.sin(timestamp_s * (2 * np.pi / year))
_df['year_cos'] = np.cos(timestamp_s * (2 * np.pi / year))
_df['wdir_sin'] = np.sin(_df["wdir_degree"])
_df['wdir_cos'] = np.cos(_df["wdir_degree"])
return _df, date_time
def map_data_to_dataframe(data, target_date):
end_timestamp = target_date - timedelta(minutes=8)
start_timestamp = end_timestamp - timedelta(days=8) + timedelta(hours=1)
df = pd.read_json(json.dumps(data))
df["obs_timestamp"] = df.apply(lambda x: datetime.fromtimestamp(x["valid_time_gmt"]).strftime(DATE_FORMAT), axis=1)
df = df.astype({'obs_timestamp': 'datetime64[ns]'})
initial_cols = ["temp", "obs_timestamp", "pressure", "wspd", "heat_index", "dewPt", "rh", "vis", "wc", "wdir", "wdir_cardinal", "clds" ]
df = df[initial_cols]
df, _ = prepare_dataframe(df, start_timestamp.strftime(DATE_FORMAT), end_timestamp.strftime(DATE_FORMAT))
return df
def map_to_timestamp(predictions, target_date):
start = target_date + timedelta(hours=1)
end = start + timedelta(hours=23)
target_hours = [x.to_pydatetime().strftime(DATE_FORMAT) for x in pd.date_range(start, end, freq="H")]
return { h: predictions[idx] for idx, h in enumerate(target_hours)}
def predict(df):
predict_df = df[-168:]
predict_df_features = predict_df[cols_to_scale]
predict_df_features = scaler.transform(predict_df_features.values)
predict_df[cols_to_scale] = predict_df_features
predictions = model(predict_df.to_numpy().reshape(1, 168, 16))
return predictions
def predict_for_date(target_date):
date_format = "%Y%m%d"
start_date = target_date - timedelta(days=9)
res = session.get(BASE_URL.format(api_key=API_KEY, start_date=start_date.strftime(date_format), end_date=target_date.strftime(date_format)))
data = res.json()
df = map_data_to_dataframe(data["observations"], target_date)
predictions = predict(df)
flattened = list(map(lambda x: math.floor(x), predictions.numpy().flatten().tolist()))
return map_to_timestamp(flattened, target_date)
def get_actual_temperatures(target_date):
date_format = "%Y%m%d"
start_date = target_date - timedelta(days=1) #Because api uses utc
end_date = target_date + timedelta(days=1)
start_date_str = (start_date - timedelta(days=1)).strftime(date_format)
end_date_str = end_date.strftime(date_format)
today = datetime.today().astimezone(pytz.timezone("America/New_York")).date()
req_url = BASE_URL.format(api_key=API_KEY, start_date=start_date_str, end_date=end_date_str)
if target_date.date() < today:
res = session.get(req_url)
else:
res = requests.get(req_url)
start_timestamp = target_date + timedelta(minutes=52)
end_timestamp = end_date + timedelta(days=1) - timedelta(minutes=8)
data = res.json()
df = pd.read_json(json.dumps(data["observations"]))
df["obs_timestamp"] = df.apply(lambda x: datetime.fromtimestamp(x["valid_time_gmt"]).astimezone(pytz.timezone("America/New_York")).strftime(DATE_FORMAT), axis=1)
df = df.astype({'obs_timestamp': 'datetime64[ns]'})
initial_cols = ["temp", "obs_timestamp"]
df = df[initial_cols]
dates_df = pd.DataFrame()
dates_df["obs_timestamp"] = pd.date_range(start_timestamp, end_timestamp, freq="H")
df = dates_df.merge(df, how='left', on='obs_timestamp')
df["obs_timestamp"] = df.apply(lambda x: (x["obs_timestamp"] + timedelta(minutes=8)).strftime(DATE_FORMAT), axis=1)
dicts = df.to_dict("records")
reduced = { k["obs_timestamp"]: k["temp"] for k in dicts}
for k in reduced:
if np.isnan(reduced[k]):
reduced[k] = None
return reduced
@app.route("/predictions")
@cross_origin()
def get_predictions():
today = datetime.today().astimezone(pytz.timezone("America/New_York")).date()
target_date = datetime.strptime(request.args["target_date"], "%Y-%m-%d")
app.logger.info(today)
app.logger.info(target_date)
# target_dates = list(filter(lambda x: x < today, [x.to_pydatetime() for x in pd.date_range(start_date, end_date, freq="D").to_list()]))
predictions = predict_for_date(target_date)
actual_temp = get_actual_temperatures(target_date) if target_date.date() <= today else None
merged = { k: {"predicted": predictions[k], "actual": actual_temp[k] if actual_temp else None} for k in predictions}
response = app.response_class(response=json.dumps(merged),
status=200,
mimetype='application/json')
return response
|