File size: 8,799 Bytes
f61d311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from flask import Flask, request
import tensorflow as tf
from datetime import datetime, timedelta
import logging 
import requests
import requests_cache
import pandas as pd
import json
import numpy as np
import pickle
import math
import pytz

from flask_cors import CORS, cross_origin


session = requests_cache.CachedSession('requests-cache')

app = Flask(__name__)
cors = CORS(app)
app.config['CORS_HEADERS'] = 'Content-Type'

app.logger.setLevel(logging.INFO)
DATE_FORMAT = "%Y-%m-%d %H:%M:%S"
API_KEY = "e1f10a1e78da46f5b10a1e78da96f525"
BASE_URL = "https://api.weather.com/v1/location/KDCA:9:US/observations/historical.json?apiKey={api_key}&units=e&startDate={start_date}&endDate={end_date}"
model = tf.keras.models.load_model('/app/model', compile=False)

scaler = pickle.load(open('./model/scaler.pkl','rb'))
cols_to_scale = ["pressure", "wspd","heat_index","dewPt", "rh",	"vis", "wc", "wdir_degree", "clds_ordinal",
             "day_sin", "day_cos", "year_sin", "year_cos", "wdir_sin", "wdir_cos"]

def get_NaN_counts(df):    
    nan_counts = df.isna().sum()
    return pd.concat([nan_counts, ((nan_counts/len(df))*100).round(2)], 
                     axis=1, 
                     keys=["NaN count", "Percentage"])

def clds_to_ordinal(row):
  mapping = {
      "SKC": 0,
      "CLR": 0,
      "FEW": 1,
      "SCT": 2,
      "BKN": 3,
      "OVC": 4,
      "VV": 5
  }
  clds = row["clds"]
  if pd.isnull(clds):
      return np.NaN 
  return mapping[clds]

def clean_wspd(row):
  if row["wdir_cardinal"] == "CALM":
    return 0
  return row["wspd"]

def restrict_wspd(row):
  if row["wspd"] < 0:
    return 0
  return row["wspd"]

def restrict_rh(row):
  if row["rh"] < 0:
    return 0
  if row["rh"] > 100:
    return 100
  return row["rh"]

def clean_wdir(row):
  if row["wdir_cardinal"] == "CALM":
    return 0
  return row["wdir"]

def wdir_cardinal_to_deg(row):
    wdir = row["wdir"]
    if not pd.isnull(wdir):
      return wdir 
    cardinal_directions = {
        'N': 0,
        'NNE': 22.5,
        'NE': 45,
        'ENE': 67.5,
        'E': 90,
        'ESE': 112.5,
        'SE': 135,
        'SSE': 157.5,
        'S': 180,
        'SSW': 202.5,
        'SW': 225,
        'WSW': 247.5,
        'W': 270,
        'WNW': 292.5,
        'NW': 315,
        'NNW': 337.5,
        'CALM': 0,
        'VAR': -1
    }
    wdir_cardinal = row["wdir_cardinal"]
   
    return cardinal_directions[wdir_cardinal] if wdir_cardinal in cardinal_directions else np.NaN

def prepare_dataframe(_df, start_timestamp, end_timestamp):
  dates_df = pd.DataFrame()
  dates_df["obs_timestamp"] = pd.date_range(start_timestamp, end_timestamp, freq="H")

  _df = dates_df.merge(_df, how='left', on='obs_timestamp')
  _df = _df.astype(
      {
          'temp': 'float',
          'pressure': 'float',
          'wspd': 'float',
          'heat_index': 'float'
      },
  )

  _df["wdir_cardinal"].fillna(method="bfill", inplace=True)
  _df["wdir_degree"] = _df.apply(wdir_cardinal_to_deg, axis=1)
  _df["clds_ordinal"] = _df.apply(clds_to_ordinal, axis=1)
  _df["temp"].interpolate("polynomial", order=2, inplace=True)
  _df["pressure"].interpolate("polynomial", order=2, inplace=True)
  _df["heat_index"].interpolate("polynomial", order=2, inplace=True)
  _df["wdir"].fillna(method="bfill", inplace=True)
  _df["wdir"] = _df.apply(clean_wdir, axis=1)
  _df["wspd"] = _df.apply(clean_wspd, axis=1)
  _df["wspd"].interpolate("polynomial", order=2, inplace=True)
  _df["wspd"] = _df.apply(restrict_wspd, axis=1)
  _df["clds"].fillna(method="bfill", inplace=True)
  _df["clds_ordinal"].interpolate("linear", inplace=True)
  _df["dewPt"].interpolate("polynomial", order=2, inplace=True)
  _df["rh"].interpolate("polynomial", order=2, inplace=True)
  _df["rh"] = _df.apply(restrict_rh, axis=1)
  _df["wc"].interpolate("polynomial", order=2, inplace=True)
  _df["vis"].fillna(method="bfill", inplace=True)
  _df.drop(["wdir", "wdir_cardinal", "clds"], axis=1, inplace=True)

  _df = _df.dropna()

  _df = _df.sort_values(by=['obs_timestamp'])
  date_time = _df.pop('obs_timestamp')
  timestamp_s = date_time.map(pd.Timestamp.timestamp)
  day = 24*60*60
  year = (365.2425)*day
  
  _df['day_sin'] = np.sin(timestamp_s * (2 * np.pi / day))
  _df['day_cos'] = np.cos(timestamp_s * (2 * np.pi / day))
  _df['year_sin'] = np.sin(timestamp_s * (2 * np.pi / year))
  _df['year_cos'] = np.cos(timestamp_s * (2 * np.pi / year))
  _df['wdir_sin'] = np.sin(_df["wdir_degree"])
  _df['wdir_cos'] = np.cos(_df["wdir_degree"])

  return _df, date_time


def map_data_to_dataframe(data, target_date):
    end_timestamp = target_date - timedelta(minutes=8)
    start_timestamp = end_timestamp - timedelta(days=8) + timedelta(hours=1)
    
    df = pd.read_json(json.dumps(data))
    df["obs_timestamp"] = df.apply(lambda x: datetime.fromtimestamp(x["valid_time_gmt"]).strftime(DATE_FORMAT), axis=1)
    df = df.astype({'obs_timestamp': 'datetime64[ns]'})
    initial_cols = ["temp", "obs_timestamp", "pressure", "wspd", "heat_index", "dewPt", "rh", "vis", "wc", "wdir", "wdir_cardinal", "clds" ]
    df = df[initial_cols]
    
    df, _ = prepare_dataframe(df, start_timestamp.strftime(DATE_FORMAT), end_timestamp.strftime(DATE_FORMAT))
    return df 


def map_to_timestamp(predictions, target_date):
  start = target_date + timedelta(hours=1)
  end = start + timedelta(hours=23)
  target_hours = [x.to_pydatetime().strftime(DATE_FORMAT) for x in pd.date_range(start, end, freq="H")]
  return { h: predictions[idx] for idx, h in enumerate(target_hours)}

def predict(df):
    predict_df = df[-168:]
    predict_df_features = predict_df[cols_to_scale]
    predict_df_features = scaler.transform(predict_df_features.values)
    predict_df[cols_to_scale] = predict_df_features
    predictions = model(predict_df.to_numpy().reshape(1, 168, 16))
    return predictions

def predict_for_date(target_date):
    date_format = "%Y%m%d"
    start_date = target_date - timedelta(days=9)
    res = session.get(BASE_URL.format(api_key=API_KEY, start_date=start_date.strftime(date_format), end_date=target_date.strftime(date_format)))
    data = res.json()
    df = map_data_to_dataframe(data["observations"], target_date)
    predictions = predict(df)
    flattened = list(map(lambda x: math.floor(x), predictions.numpy().flatten().tolist()))
    return map_to_timestamp(flattened, target_date)

def get_actual_temperatures(target_date):
  date_format = "%Y%m%d"
  start_date = target_date - timedelta(days=1)  #Because api uses utc
  end_date = target_date + timedelta(days=1)
  start_date_str = (start_date - timedelta(days=1)).strftime(date_format)
  end_date_str = end_date.strftime(date_format)
  today = datetime.today().astimezone(pytz.timezone("America/New_York")).date()
  req_url = BASE_URL.format(api_key=API_KEY, start_date=start_date_str, end_date=end_date_str)
  if target_date.date() < today:
    res = session.get(req_url)
  else:
    res = requests.get(req_url)
  start_timestamp = target_date + timedelta(minutes=52)
  end_timestamp = end_date + timedelta(days=1) - timedelta(minutes=8)
  

  data = res.json()
  df = pd.read_json(json.dumps(data["observations"]))
  df["obs_timestamp"] = df.apply(lambda x: datetime.fromtimestamp(x["valid_time_gmt"]).astimezone(pytz.timezone("America/New_York")).strftime(DATE_FORMAT), axis=1)
  df = df.astype({'obs_timestamp': 'datetime64[ns]'})
  initial_cols = ["temp", "obs_timestamp"]
  df = df[initial_cols]
  dates_df = pd.DataFrame()
  dates_df["obs_timestamp"] = pd.date_range(start_timestamp, end_timestamp, freq="H")
  df = dates_df.merge(df, how='left', on='obs_timestamp')
 
  df["obs_timestamp"] = df.apply(lambda x: (x["obs_timestamp"] + timedelta(minutes=8)).strftime(DATE_FORMAT), axis=1)
  dicts =  df.to_dict("records")
  reduced = { k["obs_timestamp"]: k["temp"] for k in dicts}
  for k in reduced:
    if np.isnan(reduced[k]): 
      reduced[k] = None
  return reduced

@app.route("/predictions")
@cross_origin()
def get_predictions():
    today = datetime.today().astimezone(pytz.timezone("America/New_York")).date()
    target_date = datetime.strptime(request.args["target_date"], "%Y-%m-%d")
    app.logger.info(today)
    app.logger.info(target_date)
    # target_dates = list(filter(lambda x: x < today, [x.to_pydatetime() for x in pd.date_range(start_date, end_date, freq="D").to_list()]))
    predictions = predict_for_date(target_date)
    actual_temp = get_actual_temperatures(target_date) if target_date.date() <= today else None

    merged = { k: {"predicted": predictions[k], "actual": actual_temp[k] if actual_temp else None} for k in predictions}
    response = app.response_class(response=json.dumps(merged),
                                  status=200,
                                  mimetype='application/json')
    return response