Added lunar lander files
Browse files- agent.py +849 -0
- lunar_lander.py +332 -0
- params.py +12 -0
agent.py
ADDED
@@ -0,0 +1,849 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import torch.nn as nn
|
5 |
+
import copy
|
6 |
+
import time, datetime
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from collections import deque
|
9 |
+
from torch.utils.tensorboard import SummaryWriter
|
10 |
+
|
11 |
+
|
12 |
+
class DQNet(nn.Module):
|
13 |
+
"""mini cnn structure"""
|
14 |
+
|
15 |
+
def __init__(self, input_dim, output_dim):
|
16 |
+
super().__init__()
|
17 |
+
|
18 |
+
self.online = nn.Sequential(
|
19 |
+
nn.Linear(input_dim, 100),
|
20 |
+
nn.ReLU(),
|
21 |
+
nn.Linear(100, 120),
|
22 |
+
nn.ReLU(),
|
23 |
+
nn.Linear(120, output_dim),
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
self.target = copy.deepcopy(self.online)
|
28 |
+
|
29 |
+
# Q_target parameters are frozen.
|
30 |
+
for p in self.target.parameters():
|
31 |
+
p.requires_grad = False
|
32 |
+
|
33 |
+
def forward(self, input, model):
|
34 |
+
if model == "online":
|
35 |
+
return self.online(input)
|
36 |
+
elif model == "target":
|
37 |
+
return self.target(input)
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
class MetricLogger:
|
42 |
+
def __init__(self, save_dir):
|
43 |
+
self.writer = SummaryWriter(log_dir=save_dir)
|
44 |
+
self.save_log = save_dir / "log"
|
45 |
+
with open(self.save_log, "w") as f:
|
46 |
+
f.write(
|
47 |
+
f"{'Episode':>8}{'Step':>8}{'Epsilon':>10}{'MeanReward':>15}"
|
48 |
+
f"{'MeanLength':>15}{'MeanLoss':>15}{'MeanQValue':>15}"
|
49 |
+
f"{'TimeDelta':>15}{'Time':>20}\n"
|
50 |
+
)
|
51 |
+
self.ep_rewards_plot = save_dir / "reward_plot.jpg"
|
52 |
+
self.ep_lengths_plot = save_dir / "length_plot.jpg"
|
53 |
+
self.ep_avg_losses_plot = save_dir / "loss_plot.jpg"
|
54 |
+
self.ep_avg_qs_plot = save_dir / "q_plot.jpg"
|
55 |
+
|
56 |
+
# History metrics
|
57 |
+
self.ep_rewards = []
|
58 |
+
self.ep_lengths = []
|
59 |
+
self.ep_avg_losses = []
|
60 |
+
self.ep_avg_qs = []
|
61 |
+
|
62 |
+
# Moving averages, added for every call to record()
|
63 |
+
self.moving_avg_ep_rewards = []
|
64 |
+
self.moving_avg_ep_lengths = []
|
65 |
+
self.moving_avg_ep_avg_losses = []
|
66 |
+
self.moving_avg_ep_avg_qs = []
|
67 |
+
|
68 |
+
# Current episode metric
|
69 |
+
self.init_episode()
|
70 |
+
|
71 |
+
# Timing
|
72 |
+
self.record_time = time.time()
|
73 |
+
|
74 |
+
def log_step(self, reward, loss, q):
|
75 |
+
self.curr_ep_reward += reward
|
76 |
+
self.curr_ep_length += 1
|
77 |
+
if loss:
|
78 |
+
self.curr_ep_loss += loss
|
79 |
+
self.curr_ep_q += q
|
80 |
+
self.curr_ep_loss_length += 1
|
81 |
+
|
82 |
+
def log_episode(self, episode_number):
|
83 |
+
"Mark end of episode"
|
84 |
+
self.ep_rewards.append(self.curr_ep_reward)
|
85 |
+
self.ep_lengths.append(self.curr_ep_length)
|
86 |
+
if self.curr_ep_loss_length == 0:
|
87 |
+
ep_avg_loss = 0
|
88 |
+
ep_avg_q = 0
|
89 |
+
else:
|
90 |
+
ep_avg_loss = np.round(self.curr_ep_loss / self.curr_ep_loss_length, 5)
|
91 |
+
ep_avg_q = np.round(self.curr_ep_q / self.curr_ep_loss_length, 5)
|
92 |
+
self.ep_avg_losses.append(ep_avg_loss)
|
93 |
+
self.ep_avg_qs.append(ep_avg_q)
|
94 |
+
self.writer.add_scalar("Avg Loss for episode", ep_avg_loss, episode_number)
|
95 |
+
self.writer.add_scalar("Avg Q value for episode", ep_avg_q, episode_number)
|
96 |
+
self.writer.flush()
|
97 |
+
self.init_episode()
|
98 |
+
|
99 |
+
def init_episode(self):
|
100 |
+
self.curr_ep_reward = 0.0
|
101 |
+
self.curr_ep_length = 0
|
102 |
+
self.curr_ep_loss = 0.0
|
103 |
+
self.curr_ep_q = 0.0
|
104 |
+
self.curr_ep_loss_length = 0
|
105 |
+
|
106 |
+
def record(self, episode, epsilon, step):
|
107 |
+
mean_ep_reward = np.round(np.mean(self.ep_rewards[-100:]), 3)
|
108 |
+
mean_ep_length = np.round(np.mean(self.ep_lengths[-100:]), 3)
|
109 |
+
mean_ep_loss = np.round(np.mean(self.ep_avg_losses[-100:]), 3)
|
110 |
+
mean_ep_q = np.round(np.mean(self.ep_avg_qs[-100:]), 3)
|
111 |
+
self.moving_avg_ep_rewards.append(mean_ep_reward)
|
112 |
+
self.moving_avg_ep_lengths.append(mean_ep_length)
|
113 |
+
self.moving_avg_ep_avg_losses.append(mean_ep_loss)
|
114 |
+
self.moving_avg_ep_avg_qs.append(mean_ep_q)
|
115 |
+
|
116 |
+
last_record_time = self.record_time
|
117 |
+
self.record_time = time.time()
|
118 |
+
time_since_last_record = np.round(self.record_time - last_record_time, 3)
|
119 |
+
|
120 |
+
print(
|
121 |
+
f"Episode {episode} - "
|
122 |
+
f"Step {step} - "
|
123 |
+
f"Epsilon {epsilon} - "
|
124 |
+
f"Mean Reward {mean_ep_reward} - "
|
125 |
+
f"Mean Length {mean_ep_length} - "
|
126 |
+
f"Mean Loss {mean_ep_loss} - "
|
127 |
+
f"Mean Q Value {mean_ep_q} - "
|
128 |
+
f"Time Delta {time_since_last_record} - "
|
129 |
+
f"Time {datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S')}"
|
130 |
+
)
|
131 |
+
self.writer.add_scalar("Mean reward last 100 episodes", mean_ep_reward, episode)
|
132 |
+
self.writer.add_scalar("Mean length last 100 episodes", mean_ep_length, episode)
|
133 |
+
self.writer.add_scalar("Mean loss last 100 episodes", mean_ep_loss, episode)
|
134 |
+
self.writer.add_scalar("Mean reward last 100 episodes", mean_ep_reward, episode)
|
135 |
+
self.writer.add_scalar("Epsilon value", epsilon, episode)
|
136 |
+
self.writer.add_scalar("Mean Q Value last 100 episodes", mean_ep_q, episode)
|
137 |
+
self.writer.flush()
|
138 |
+
with open(self.save_log, "a") as f:
|
139 |
+
f.write(
|
140 |
+
f"{episode:8d}{step:8d}{epsilon:10.3f}"
|
141 |
+
f"{mean_ep_reward:15.3f}{mean_ep_length:15.3f}{mean_ep_loss:15.3f}{mean_ep_q:15.3f}"
|
142 |
+
f"{time_since_last_record:15.3f}"
|
143 |
+
f"{datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S'):>20}\n"
|
144 |
+
)
|
145 |
+
|
146 |
+
for metric in ["ep_rewards", "ep_lengths", "ep_avg_losses", "ep_avg_qs"]:
|
147 |
+
plt.plot(getattr(self, f"moving_avg_{metric}"))
|
148 |
+
plt.savefig(getattr(self, f"{metric}_plot"))
|
149 |
+
plt.clf()
|
150 |
+
|
151 |
+
|
152 |
+
class DQNAgent:
|
153 |
+
def __init__(self,
|
154 |
+
state_dim,
|
155 |
+
action_dim,
|
156 |
+
save_dir,
|
157 |
+
checkpoint=None,
|
158 |
+
learning_rate=0.00025,
|
159 |
+
max_memory_size=100000,
|
160 |
+
batch_size=32,
|
161 |
+
exploration_rate=1,
|
162 |
+
exploration_rate_decay=0.9999999,
|
163 |
+
exploration_rate_min=0.1,
|
164 |
+
training_frequency=1,
|
165 |
+
learning_starts=1000,
|
166 |
+
target_network_sync_frequency=500,
|
167 |
+
reset_exploration_rate=False,
|
168 |
+
save_frequency=100000,
|
169 |
+
gamma=0.9,
|
170 |
+
load_replay_buffer=True):
|
171 |
+
self.state_dim = state_dim
|
172 |
+
self.action_dim = action_dim
|
173 |
+
self.max_memory_size = max_memory_size
|
174 |
+
self.memory = deque(maxlen=max_memory_size)
|
175 |
+
self.batch_size = batch_size
|
176 |
+
|
177 |
+
self.exploration_rate = exploration_rate
|
178 |
+
self.exploration_rate_decay = exploration_rate_decay
|
179 |
+
self.exploration_rate_min = exploration_rate_min
|
180 |
+
self.gamma = gamma
|
181 |
+
|
182 |
+
self.curr_step = 0
|
183 |
+
self.learning_starts = learning_starts # min. experiences before training
|
184 |
+
|
185 |
+
self.training_frequency = training_frequency # no. of experiences between updates to Q_online
|
186 |
+
self.target_network_sync_frequency = target_network_sync_frequency # no. of experiences between Q_target & Q_online sync
|
187 |
+
|
188 |
+
self.save_every = save_frequency # no. of experiences between saving the network
|
189 |
+
self.save_dir = save_dir
|
190 |
+
|
191 |
+
self.use_cuda = torch.cuda.is_available()
|
192 |
+
|
193 |
+
self.net = DQNet(self.state_dim, self.action_dim).float()
|
194 |
+
if self.use_cuda:
|
195 |
+
self.net = self.net.to(device='cuda')
|
196 |
+
if checkpoint:
|
197 |
+
self.load(checkpoint, reset_exploration_rate, load_replay_buffer)
|
198 |
+
|
199 |
+
self.optimizer = torch.optim.AdamW(self.net.parameters(), lr=learning_rate, amsgrad=True)
|
200 |
+
self.loss_fn = torch.nn.SmoothL1Loss()
|
201 |
+
# self.optimizer = torch.optim.Adam(self.net.parameters(), lr=learning_rate)
|
202 |
+
# self.loss_fn = torch.nn.MSELoss()
|
203 |
+
|
204 |
+
|
205 |
+
def act(self, state):
|
206 |
+
"""
|
207 |
+
Given a state, choose an epsilon-greedy action and update value of step.
|
208 |
+
|
209 |
+
Inputs:
|
210 |
+
state(LazyFrame): A single observation of the current state, dimension is (state_dim)
|
211 |
+
Outputs:
|
212 |
+
action_idx (int): An integer representing which action the agent will perform
|
213 |
+
"""
|
214 |
+
# EXPLORE
|
215 |
+
if np.random.rand() < self.exploration_rate:
|
216 |
+
action_idx = np.random.randint(self.action_dim)
|
217 |
+
|
218 |
+
# EXPLOIT
|
219 |
+
else:
|
220 |
+
state = torch.FloatTensor(state).cuda() if self.use_cuda else torch.FloatTensor(state)
|
221 |
+
state = state.unsqueeze(0)
|
222 |
+
action_values = self.net(state, model='online')
|
223 |
+
action_idx = torch.argmax(action_values, axis=1).item()
|
224 |
+
|
225 |
+
# decrease exploration_rate
|
226 |
+
|
227 |
+
self.exploration_rate *= self.exploration_rate_decay
|
228 |
+
self.exploration_rate = max(self.exploration_rate_min, self.exploration_rate)
|
229 |
+
|
230 |
+
# increment step
|
231 |
+
self.curr_step += 1
|
232 |
+
return action_idx
|
233 |
+
|
234 |
+
def cache(self, state, next_state, action, reward, done):
|
235 |
+
"""
|
236 |
+
Store the experience to self.memory (replay buffer)
|
237 |
+
|
238 |
+
Inputs:
|
239 |
+
state (LazyFrame),
|
240 |
+
next_state (LazyFrame),
|
241 |
+
action (int),
|
242 |
+
reward (float),
|
243 |
+
done(bool))
|
244 |
+
"""
|
245 |
+
state = torch.FloatTensor(state).cuda() if self.use_cuda else torch.FloatTensor(state)
|
246 |
+
next_state = torch.FloatTensor(next_state).cuda() if self.use_cuda else torch.FloatTensor(next_state)
|
247 |
+
action = torch.LongTensor([action]).cuda() if self.use_cuda else torch.LongTensor([action])
|
248 |
+
reward = torch.DoubleTensor([reward]).cuda() if self.use_cuda else torch.DoubleTensor([reward])
|
249 |
+
done = torch.BoolTensor([done]).cuda() if self.use_cuda else torch.BoolTensor([done])
|
250 |
+
|
251 |
+
self.memory.append( (state, next_state, action, reward, done,) )
|
252 |
+
|
253 |
+
|
254 |
+
def recall(self):
|
255 |
+
"""
|
256 |
+
Retrieve a batch of experiences from memory
|
257 |
+
"""
|
258 |
+
batch = random.sample(self.memory, self.batch_size)
|
259 |
+
state, next_state, action, reward, done = map(torch.stack, zip(*batch))
|
260 |
+
return state, next_state, action.squeeze(), reward.squeeze(), done.squeeze()
|
261 |
+
|
262 |
+
|
263 |
+
def td_estimate(self, states, actions):
|
264 |
+
actions = actions.reshape(-1, 1)
|
265 |
+
predicted_qs = self.net(states, model='online')# Q_online(s,a)
|
266 |
+
predicted_qs = predicted_qs.gather(1, actions)
|
267 |
+
return predicted_qs
|
268 |
+
|
269 |
+
|
270 |
+
@torch.no_grad()
|
271 |
+
def td_target(self, rewards, next_states, dones):
|
272 |
+
rewards = rewards.reshape(-1, 1)
|
273 |
+
dones = dones.reshape(-1, 1)
|
274 |
+
target_qs = self.net(next_states, model='target')
|
275 |
+
target_qs = torch.max(target_qs, dim=1).values
|
276 |
+
target_qs = target_qs.reshape(-1, 1)
|
277 |
+
target_qs[dones] = 0.0
|
278 |
+
return (rewards + (self.gamma * target_qs))
|
279 |
+
|
280 |
+
def update_Q_online(self, td_estimate, td_target) :
|
281 |
+
loss = self.loss_fn(td_estimate.float(), td_target.float())
|
282 |
+
self.optimizer.zero_grad()
|
283 |
+
loss.backward()
|
284 |
+
self.optimizer.step()
|
285 |
+
return loss.item()
|
286 |
+
|
287 |
+
|
288 |
+
def sync_Q_target(self):
|
289 |
+
self.net.target.load_state_dict(self.net.online.state_dict())
|
290 |
+
|
291 |
+
|
292 |
+
def learn(self):
|
293 |
+
if self.curr_step % self.target_network_sync_frequency == 0:
|
294 |
+
self.sync_Q_target()
|
295 |
+
|
296 |
+
if self.curr_step % self.save_every == 0:
|
297 |
+
self.save()
|
298 |
+
|
299 |
+
if self.curr_step < self.learning_starts:
|
300 |
+
return None, None
|
301 |
+
|
302 |
+
if self.curr_step % self.training_frequency != 0:
|
303 |
+
return None, None
|
304 |
+
|
305 |
+
# Sample from memory
|
306 |
+
state, next_state, action, reward, done = self.recall()
|
307 |
+
|
308 |
+
# Get TD Estimate
|
309 |
+
td_est = self.td_estimate(state, action)
|
310 |
+
|
311 |
+
# Get TD Target
|
312 |
+
td_tgt = self.td_target(reward, next_state, done)
|
313 |
+
|
314 |
+
# Backpropagate loss through Q_online
|
315 |
+
|
316 |
+
loss = self.update_Q_online(td_est, td_tgt)
|
317 |
+
|
318 |
+
return (td_est.mean().item(), loss)
|
319 |
+
|
320 |
+
|
321 |
+
def save(self):
|
322 |
+
save_path = self.save_dir / f"airstriker_net_{int(self.curr_step // self.save_every)}.chkpt"
|
323 |
+
torch.save(
|
324 |
+
dict(
|
325 |
+
model=self.net.state_dict(),
|
326 |
+
exploration_rate=self.exploration_rate,
|
327 |
+
replay_memory=self.memory
|
328 |
+
),
|
329 |
+
save_path
|
330 |
+
)
|
331 |
+
|
332 |
+
print(f"Airstriker model saved to {save_path} at step {self.curr_step}")
|
333 |
+
|
334 |
+
|
335 |
+
def load(self, load_path, reset_exploration_rate, load_replay_buffer):
|
336 |
+
if not load_path.exists():
|
337 |
+
raise ValueError(f"{load_path} does not exist")
|
338 |
+
|
339 |
+
ckp = torch.load(load_path, map_location=('cuda' if self.use_cuda else 'cpu'))
|
340 |
+
exploration_rate = ckp.get('exploration_rate')
|
341 |
+
state_dict = ckp.get('model')
|
342 |
+
|
343 |
+
|
344 |
+
print(f"Loading model at {load_path} with exploration rate {exploration_rate}")
|
345 |
+
self.net.load_state_dict(state_dict)
|
346 |
+
|
347 |
+
if load_replay_buffer:
|
348 |
+
replay_memory = ckp.get('replay_memory')
|
349 |
+
print(f"Loading replay memory. Len {len(replay_memory)}" if replay_memory else "Saved replay memory not found. Not restoring replay memory.")
|
350 |
+
self.memory = replay_memory if replay_memory else self.memory
|
351 |
+
|
352 |
+
if reset_exploration_rate:
|
353 |
+
print(f"Reset exploration rate option specified. Not restoring saved exploration rate {exploration_rate}. The current exploration rate is {self.exploration_rate}")
|
354 |
+
else:
|
355 |
+
print(f"Setting exploration rate to {exploration_rate} not loaded.")
|
356 |
+
self.exploration_rate = exploration_rate
|
357 |
+
|
358 |
+
|
359 |
+
class DDQNAgent(DQNAgent):
|
360 |
+
@torch.no_grad()
|
361 |
+
def td_target(self, rewards, next_states, dones):
|
362 |
+
rewards = rewards.reshape(-1, 1)
|
363 |
+
dones = dones.reshape(-1, 1)
|
364 |
+
q_vals = self.net(next_states, model='online')
|
365 |
+
target_actions = torch.argmax(q_vals, axis=1)
|
366 |
+
target_actions = target_actions.reshape(-1, 1)
|
367 |
+
|
368 |
+
target_qs = self.net(next_states, model='target')
|
369 |
+
target_qs = target_qs.gather(1, target_actions)
|
370 |
+
target_qs = target_qs.reshape(-1, 1)
|
371 |
+
target_qs[dones] = 0.0
|
372 |
+
return (rewards + (self.gamma * target_qs))
|
373 |
+
|
374 |
+
|
375 |
+
class DuelingDQNet(nn.Module):
|
376 |
+
def __init__(self, input_dim, output_dim):
|
377 |
+
super().__init__()
|
378 |
+
self.feature_layer = nn.Sequential(
|
379 |
+
nn.Linear(input_dim, 150),
|
380 |
+
nn.ReLU(),
|
381 |
+
nn.Linear(150, 120),
|
382 |
+
nn.ReLU()
|
383 |
+
)
|
384 |
+
|
385 |
+
self.value_layer = nn.Sequential(
|
386 |
+
nn.Linear(120, 120),
|
387 |
+
nn.ReLU(),
|
388 |
+
nn.Linear(120, 1)
|
389 |
+
)
|
390 |
+
|
391 |
+
self.advantage_layer = nn.Sequential(
|
392 |
+
nn.Linear(120, 120),
|
393 |
+
nn.ReLU(),
|
394 |
+
nn.Linear(120, output_dim)
|
395 |
+
)
|
396 |
+
|
397 |
+
def forward(self, state):
|
398 |
+
feature_output = self.feature_layer(state)
|
399 |
+
# feature_output = feature_output.view(feature_output.size(0), -1)
|
400 |
+
value = self.value_layer(feature_output)
|
401 |
+
advantage = self.advantage_layer(feature_output)
|
402 |
+
q_value = value + (advantage - advantage.mean())
|
403 |
+
|
404 |
+
return q_value
|
405 |
+
|
406 |
+
|
407 |
+
class DuelingDQNAgent:
|
408 |
+
def __init__(self,
|
409 |
+
state_dim,
|
410 |
+
action_dim,
|
411 |
+
save_dir,
|
412 |
+
checkpoint=None,
|
413 |
+
learning_rate=0.00025,
|
414 |
+
max_memory_size=100000,
|
415 |
+
batch_size=32,
|
416 |
+
exploration_rate=1,
|
417 |
+
exploration_rate_decay=0.9999999,
|
418 |
+
exploration_rate_min=0.1,
|
419 |
+
training_frequency=1,
|
420 |
+
learning_starts=1000,
|
421 |
+
target_network_sync_frequency=500,
|
422 |
+
reset_exploration_rate=False,
|
423 |
+
save_frequency=100000,
|
424 |
+
gamma=0.9,
|
425 |
+
load_replay_buffer=True):
|
426 |
+
self.state_dim = state_dim
|
427 |
+
self.action_dim = action_dim
|
428 |
+
self.max_memory_size = max_memory_size
|
429 |
+
self.memory = deque(maxlen=max_memory_size)
|
430 |
+
self.batch_size = batch_size
|
431 |
+
|
432 |
+
self.exploration_rate = exploration_rate
|
433 |
+
self.exploration_rate_decay = exploration_rate_decay
|
434 |
+
self.exploration_rate_min = exploration_rate_min
|
435 |
+
self.gamma = gamma
|
436 |
+
|
437 |
+
self.curr_step = 0
|
438 |
+
self.learning_starts = learning_starts # min. experiences before training
|
439 |
+
|
440 |
+
self.training_frequency = training_frequency # no. of experiences between updates to Q_online
|
441 |
+
self.target_network_sync_frequency = target_network_sync_frequency # no. of experiences between Q_target & Q_online sync
|
442 |
+
|
443 |
+
self.save_every = save_frequency # no. of experiences between saving the network
|
444 |
+
self.save_dir = save_dir
|
445 |
+
|
446 |
+
self.use_cuda = torch.cuda.is_available()
|
447 |
+
|
448 |
+
|
449 |
+
self.online_net = DuelingDQNet(self.state_dim, self.action_dim).float()
|
450 |
+
self.target_net = copy.deepcopy(self.online_net)
|
451 |
+
# Q_target parameters are frozen.
|
452 |
+
for p in self.target_net.parameters():
|
453 |
+
p.requires_grad = False
|
454 |
+
|
455 |
+
if self.use_cuda:
|
456 |
+
self.online_net = self.online_net(device='cuda')
|
457 |
+
self.target_net = self.target_net(device='cuda')
|
458 |
+
if checkpoint:
|
459 |
+
self.load(checkpoint, reset_exploration_rate, load_replay_buffer)
|
460 |
+
|
461 |
+
self.optimizer = torch.optim.AdamW(self.online_net.parameters(), lr=learning_rate, amsgrad=True)
|
462 |
+
self.loss_fn = torch.nn.SmoothL1Loss()
|
463 |
+
# self.optimizer = torch.optim.Adam(self.online_net.parameters(), lr=learning_rate)
|
464 |
+
# self.loss_fn = torch.nn.MSELoss()
|
465 |
+
|
466 |
+
|
467 |
+
def act(self, state):
|
468 |
+
"""
|
469 |
+
Given a state, choose an epsilon-greedy action and update value of step.
|
470 |
+
|
471 |
+
Inputs:
|
472 |
+
state(LazyFrame): A single observation of the current state, dimension is (state_dim)
|
473 |
+
Outputs:
|
474 |
+
action_idx (int): An integer representing which action the agent will perform
|
475 |
+
"""
|
476 |
+
# EXPLORE
|
477 |
+
if np.random.rand() < self.exploration_rate:
|
478 |
+
action_idx = np.random.randint(self.action_dim)
|
479 |
+
|
480 |
+
# EXPLOIT
|
481 |
+
else:
|
482 |
+
state = torch.FloatTensor(state).cuda() if self.use_cuda else torch.FloatTensor(state)
|
483 |
+
state = state.unsqueeze(0)
|
484 |
+
action_values = self.online_net(state)
|
485 |
+
action_idx = torch.argmax(action_values, axis=1).item()
|
486 |
+
|
487 |
+
# decrease exploration_rate
|
488 |
+
self.exploration_rate *= self.exploration_rate_decay
|
489 |
+
self.exploration_rate = max(self.exploration_rate_min, self.exploration_rate)
|
490 |
+
|
491 |
+
# increment step
|
492 |
+
self.curr_step += 1
|
493 |
+
return action_idx
|
494 |
+
|
495 |
+
def cache(self, state, next_state, action, reward, done):
|
496 |
+
"""
|
497 |
+
Store the experience to self.memory (replay buffer)
|
498 |
+
|
499 |
+
Inputs:
|
500 |
+
state (LazyFrame),
|
501 |
+
next_state (LazyFrame),
|
502 |
+
action (int),
|
503 |
+
reward (float),
|
504 |
+
done(bool))
|
505 |
+
"""
|
506 |
+
print("####################################")
|
507 |
+
print(state)
|
508 |
+
state = torch.FloatTensor(state).cuda() if self.use_cuda else torch.FloatTensor(state)
|
509 |
+
next_state = torch.FloatTensor(next_state).cuda() if self.use_cuda else torch.FloatTensor(next_state)
|
510 |
+
action = torch.LongTensor([action]).cuda() if self.use_cuda else torch.LongTensor([action])
|
511 |
+
reward = torch.DoubleTensor([reward]).cuda() if self.use_cuda else torch.DoubleTensor([reward])
|
512 |
+
done = torch.BoolTensor([done]).cuda() if self.use_cuda else torch.BoolTensor([done])
|
513 |
+
|
514 |
+
self.memory.append( (state, next_state, action, reward, done,) )
|
515 |
+
|
516 |
+
|
517 |
+
def recall(self):
|
518 |
+
"""
|
519 |
+
Retrieve a batch of experiences from memory
|
520 |
+
"""
|
521 |
+
batch = random.sample(self.memory, self.batch_size)
|
522 |
+
state, next_state, action, reward, done = map(torch.stack, zip(*batch))
|
523 |
+
return state, next_state, action.squeeze(), reward.squeeze(), done.squeeze()
|
524 |
+
|
525 |
+
|
526 |
+
def td_estimate(self, states, actions):
|
527 |
+
actions = actions.reshape(-1, 1)
|
528 |
+
predicted_qs = self.online_net(states)# Q_online(s,a)
|
529 |
+
predicted_qs = predicted_qs.gather(1, actions)
|
530 |
+
return predicted_qs
|
531 |
+
|
532 |
+
|
533 |
+
@torch.no_grad()
|
534 |
+
def td_target(self, rewards, next_states, dones):
|
535 |
+
rewards = rewards.reshape(-1, 1)
|
536 |
+
dones = dones.reshape(-1, 1)
|
537 |
+
target_qs = self.target_net.forward(next_states)
|
538 |
+
target_qs = torch.max(target_qs, dim=1).values
|
539 |
+
target_qs = target_qs.reshape(-1, 1)
|
540 |
+
target_qs[dones] = 0.0
|
541 |
+
return (rewards + (self.gamma * target_qs))
|
542 |
+
|
543 |
+
def update_Q_online(self, td_estimate, td_target) :
|
544 |
+
loss = self.loss_fn(td_estimate.float(), td_target.float())
|
545 |
+
self.optimizer.zero_grad()
|
546 |
+
loss.backward()
|
547 |
+
self.optimizer.step()
|
548 |
+
return loss.item()
|
549 |
+
|
550 |
+
|
551 |
+
def sync_Q_target(self):
|
552 |
+
self.target_net.load_state_dict(self.online_net.state_dict())
|
553 |
+
|
554 |
+
|
555 |
+
def learn(self):
|
556 |
+
if self.curr_step % self.target_network_sync_frequency == 0:
|
557 |
+
self.sync_Q_target()
|
558 |
+
|
559 |
+
if self.curr_step % self.save_every == 0:
|
560 |
+
self.save()
|
561 |
+
|
562 |
+
if self.curr_step < self.learning_starts:
|
563 |
+
return None, None
|
564 |
+
|
565 |
+
if self.curr_step % self.training_frequency != 0:
|
566 |
+
return None, None
|
567 |
+
|
568 |
+
# Sample from memory
|
569 |
+
state, next_state, action, reward, done = self.recall()
|
570 |
+
|
571 |
+
# Get TD Estimate
|
572 |
+
td_est = self.td_estimate(state, action)
|
573 |
+
|
574 |
+
# Get TD Target
|
575 |
+
td_tgt = self.td_target(reward, next_state, done)
|
576 |
+
|
577 |
+
# Backpropagate loss through Q_online
|
578 |
+
loss = self.update_Q_online(td_est, td_tgt)
|
579 |
+
|
580 |
+
return (td_est.mean().item(), loss)
|
581 |
+
|
582 |
+
|
583 |
+
def save(self):
|
584 |
+
save_path = self.save_dir / f"airstriker_net_{int(self.curr_step // self.save_every)}.chkpt"
|
585 |
+
torch.save(
|
586 |
+
dict(
|
587 |
+
model=self.online_net.state_dict(),
|
588 |
+
exploration_rate=self.exploration_rate,
|
589 |
+
replay_memory=self.memory
|
590 |
+
),
|
591 |
+
save_path
|
592 |
+
)
|
593 |
+
|
594 |
+
print(f"Airstriker model saved to {save_path} at step {self.curr_step}")
|
595 |
+
|
596 |
+
|
597 |
+
def load(self, load_path, reset_exploration_rate, load_replay_buffer):
|
598 |
+
if not load_path.exists():
|
599 |
+
raise ValueError(f"{load_path} does not exist")
|
600 |
+
|
601 |
+
ckp = torch.load(load_path, map_location=('cuda' if self.use_cuda else 'cpu'))
|
602 |
+
exploration_rate = ckp.get('exploration_rate')
|
603 |
+
state_dict = ckp.get('model')
|
604 |
+
|
605 |
+
|
606 |
+
print(f"Loading model at {load_path} with exploration rate {exploration_rate}")
|
607 |
+
self.online_net.load_state_dict(state_dict)
|
608 |
+
self.target_net = copy.deepcopy(self.online_net)
|
609 |
+
self.sync_Q_target()
|
610 |
+
|
611 |
+
if load_replay_buffer:
|
612 |
+
replay_memory = ckp.get('replay_memory')
|
613 |
+
print(f"Loading replay memory. Len {len(replay_memory)}" if replay_memory else "Saved replay memory not found. Not restoring replay memory.")
|
614 |
+
self.memory = replay_memory if replay_memory else self.memory
|
615 |
+
|
616 |
+
if reset_exploration_rate:
|
617 |
+
print(f"Reset exploration rate option specified. Not restoring saved exploration rate {exploration_rate}. The current exploration rate is {self.exploration_rate}")
|
618 |
+
else:
|
619 |
+
print(f"Setting exploration rate to {exploration_rate} not loaded.")
|
620 |
+
self.exploration_rate = exploration_rate
|
621 |
+
|
622 |
+
|
623 |
+
|
624 |
+
|
625 |
+
class DuelingDDQNAgent(DuelingDQNAgent):
|
626 |
+
@torch.no_grad()
|
627 |
+
def td_target(self, rewards, next_states, dones):
|
628 |
+
rewards = rewards.reshape(-1, 1)
|
629 |
+
dones = dones.reshape(-1, 1)
|
630 |
+
q_vals = self.online_net.forward(next_states)
|
631 |
+
target_actions = torch.argmax(q_vals, axis=1)
|
632 |
+
target_actions = target_actions.reshape(-1, 1)
|
633 |
+
|
634 |
+
target_qs = self.target_net.forward(next_states)
|
635 |
+
target_qs = target_qs.gather(1, target_actions)
|
636 |
+
target_qs = target_qs.reshape(-1, 1)
|
637 |
+
target_qs[dones] = 0.0
|
638 |
+
return (rewards + (self.gamma * target_qs))
|
639 |
+
|
640 |
+
|
641 |
+
|
642 |
+
class DQNAgentWithStepDecay:
|
643 |
+
def __init__(self,
|
644 |
+
state_dim,
|
645 |
+
action_dim,
|
646 |
+
save_dir,
|
647 |
+
checkpoint=None,
|
648 |
+
learning_rate=0.00025,
|
649 |
+
max_memory_size=100000,
|
650 |
+
batch_size=32,
|
651 |
+
exploration_rate=1,
|
652 |
+
exploration_rate_decay=0.9999999,
|
653 |
+
exploration_rate_min=0.1,
|
654 |
+
training_frequency=1,
|
655 |
+
learning_starts=1000,
|
656 |
+
target_network_sync_frequency=500,
|
657 |
+
reset_exploration_rate=False,
|
658 |
+
save_frequency=100000,
|
659 |
+
gamma=0.9,
|
660 |
+
load_replay_buffer=True):
|
661 |
+
self.state_dim = state_dim
|
662 |
+
self.action_dim = action_dim
|
663 |
+
self.max_memory_size = max_memory_size
|
664 |
+
self.memory = deque(maxlen=max_memory_size)
|
665 |
+
self.batch_size = batch_size
|
666 |
+
|
667 |
+
self.exploration_rate = exploration_rate
|
668 |
+
self.exploration_rate_decay = exploration_rate_decay
|
669 |
+
self.exploration_rate_min = exploration_rate_min
|
670 |
+
self.gamma = gamma
|
671 |
+
|
672 |
+
self.curr_step = 0
|
673 |
+
self.learning_starts = learning_starts # min. experiences before training
|
674 |
+
|
675 |
+
self.training_frequency = training_frequency # no. of experiences between updates to Q_online
|
676 |
+
self.target_network_sync_frequency = target_network_sync_frequency # no. of experiences between Q_target & Q_online sync
|
677 |
+
|
678 |
+
self.save_every = save_frequency # no. of experiences between saving the network
|
679 |
+
self.save_dir = save_dir
|
680 |
+
|
681 |
+
self.use_cuda = torch.cuda.is_available()
|
682 |
+
|
683 |
+
self.net = DQNet(self.state_dim, self.action_dim).float()
|
684 |
+
if self.use_cuda:
|
685 |
+
self.net = self.net.to(device='cuda')
|
686 |
+
if checkpoint:
|
687 |
+
self.load(checkpoint, reset_exploration_rate, load_replay_buffer)
|
688 |
+
|
689 |
+
self.optimizer = torch.optim.AdamW(self.net.parameters(), lr=learning_rate, amsgrad=True)
|
690 |
+
self.loss_fn = torch.nn.SmoothL1Loss()
|
691 |
+
# self.optimizer = torch.optim.Adam(self.net.parameters(), lr=learning_rate)
|
692 |
+
# self.loss_fn = torch.nn.MSELoss()
|
693 |
+
|
694 |
+
|
695 |
+
def act(self, state):
|
696 |
+
"""
|
697 |
+
Given a state, choose an epsilon-greedy action and update value of step.
|
698 |
+
|
699 |
+
Inputs:
|
700 |
+
state(LazyFrame): A single observation of the current state, dimension is (state_dim)
|
701 |
+
Outputs:
|
702 |
+
action_idx (int): An integer representing which action the agent will perform
|
703 |
+
"""
|
704 |
+
# EXPLORE
|
705 |
+
if np.random.rand() < self.exploration_rate:
|
706 |
+
action_idx = np.random.randint(self.action_dim)
|
707 |
+
|
708 |
+
# EXPLOIT
|
709 |
+
else:
|
710 |
+
state = torch.FloatTensor(state).cuda() if self.use_cuda else torch.FloatTensor(state)
|
711 |
+
state = state.unsqueeze(0)
|
712 |
+
action_values = self.net(state, model='online')
|
713 |
+
action_idx = torch.argmax(action_values, axis=1).item()
|
714 |
+
|
715 |
+
# decrease exploration_rate
|
716 |
+
|
717 |
+
self.exploration_rate *= self.exploration_rate_decay
|
718 |
+
self.exploration_rate = max(self.exploration_rate_min, self.exploration_rate)
|
719 |
+
|
720 |
+
# increment step
|
721 |
+
self.curr_step += 1
|
722 |
+
return action_idx
|
723 |
+
|
724 |
+
def cache(self, state, next_state, action, reward, done):
|
725 |
+
"""
|
726 |
+
Store the experience to self.memory (replay buffer)
|
727 |
+
|
728 |
+
Inputs:
|
729 |
+
state (LazyFrame),
|
730 |
+
next_state (LazyFrame),
|
731 |
+
action (int),
|
732 |
+
reward (float),
|
733 |
+
done(bool))
|
734 |
+
"""
|
735 |
+
state = torch.FloatTensor(state).cuda() if self.use_cuda else torch.FloatTensor(state)
|
736 |
+
next_state = torch.FloatTensor(next_state).cuda() if self.use_cuda else torch.FloatTensor(next_state)
|
737 |
+
action = torch.LongTensor([action]).cuda() if self.use_cuda else torch.LongTensor([action])
|
738 |
+
reward = torch.DoubleTensor([reward]).cuda() if self.use_cuda else torch.DoubleTensor([reward])
|
739 |
+
done = torch.BoolTensor([done]).cuda() if self.use_cuda else torch.BoolTensor([done])
|
740 |
+
|
741 |
+
self.memory.append( (state, next_state, action, reward, done) )
|
742 |
+
|
743 |
+
|
744 |
+
def recall(self):
|
745 |
+
"""
|
746 |
+
Retrieve a batch of experiences from memory
|
747 |
+
"""
|
748 |
+
batch = random.sample(self.memory, self.batch_size)
|
749 |
+
state, next_state, action, reward, done = map(torch.stack, zip(*batch))
|
750 |
+
return state, next_state, action.squeeze(), reward.squeeze(), done.squeeze()
|
751 |
+
|
752 |
+
|
753 |
+
def td_estimate(self, states, actions):
|
754 |
+
actions = actions.reshape(-1, 1)
|
755 |
+
predicted_qs = self.net(states, model='online')# Q_online(s,a)
|
756 |
+
predicted_qs = predicted_qs.gather(1, actions)
|
757 |
+
return predicted_qs
|
758 |
+
|
759 |
+
|
760 |
+
@torch.no_grad()
|
761 |
+
def td_target(self, rewards, next_states, dones):
|
762 |
+
rewards = rewards.reshape(-1, 1)
|
763 |
+
dones = dones.reshape(-1, 1)
|
764 |
+
target_qs = self.net(next_states, model='target')
|
765 |
+
target_qs = torch.max(target_qs, dim=1).values
|
766 |
+
target_qs = target_qs.reshape(-1, 1)
|
767 |
+
target_qs[dones] = 0.0
|
768 |
+
val = self.gamma * target_qs
|
769 |
+
return (rewards + val)
|
770 |
+
|
771 |
+
def update_Q_online(self, td_estimate, td_target) :
|
772 |
+
loss = self.loss_fn(td_estimate.float(), td_target.float())
|
773 |
+
self.optimizer.zero_grad()
|
774 |
+
loss.backward()
|
775 |
+
self.optimizer.step()
|
776 |
+
return loss.item()
|
777 |
+
|
778 |
+
|
779 |
+
def sync_Q_target(self):
|
780 |
+
self.net.target.load_state_dict(self.net.online.state_dict())
|
781 |
+
|
782 |
+
|
783 |
+
def learn(self):
|
784 |
+
if self.curr_step % self.target_network_sync_frequency == 0:
|
785 |
+
self.sync_Q_target()
|
786 |
+
|
787 |
+
if self.curr_step % self.save_every == 0:
|
788 |
+
self.save()
|
789 |
+
|
790 |
+
if self.curr_step < self.learning_starts:
|
791 |
+
return None, None
|
792 |
+
|
793 |
+
if self.curr_step % self.training_frequency != 0:
|
794 |
+
return None, None
|
795 |
+
|
796 |
+
# Sample from memory
|
797 |
+
state, next_state, action, reward, done = self.recall()
|
798 |
+
|
799 |
+
# Get TD Estimate
|
800 |
+
td_est = self.td_estimate(state, action)
|
801 |
+
|
802 |
+
# Get TD Target
|
803 |
+
td_tgt = self.td_target(reward, next_state, done)
|
804 |
+
|
805 |
+
# Backpropagate loss through Q_online
|
806 |
+
|
807 |
+
loss = self.update_Q_online(td_est, td_tgt)
|
808 |
+
|
809 |
+
return (td_est.mean().item(), loss)
|
810 |
+
|
811 |
+
|
812 |
+
def save(self):
|
813 |
+
save_path = self.save_dir / f"airstriker_net_{int(self.curr_step // self.save_every)}.chkpt"
|
814 |
+
torch.save(
|
815 |
+
dict(
|
816 |
+
model=self.net.state_dict(),
|
817 |
+
exploration_rate=self.exploration_rate,
|
818 |
+
replay_memory=self.memory
|
819 |
+
),
|
820 |
+
save_path
|
821 |
+
)
|
822 |
+
|
823 |
+
print(f"Airstriker model saved to {save_path} at step {self.curr_step}")
|
824 |
+
|
825 |
+
|
826 |
+
def load(self, load_path, reset_exploration_rate, load_replay_buffer):
|
827 |
+
if not load_path.exists():
|
828 |
+
raise ValueError(f"{load_path} does not exist")
|
829 |
+
|
830 |
+
ckp = torch.load(load_path, map_location=('cuda' if self.use_cuda else 'cpu'))
|
831 |
+
exploration_rate = ckp.get('exploration_rate')
|
832 |
+
state_dict = ckp.get('model')
|
833 |
+
|
834 |
+
|
835 |
+
print(f"Loading model at {load_path} with exploration rate {exploration_rate}")
|
836 |
+
self.net.load_state_dict(state_dict)
|
837 |
+
|
838 |
+
if load_replay_buffer:
|
839 |
+
replay_memory = ckp.get('replay_memory')
|
840 |
+
print(f"Loading replay memory. Len {len(replay_memory)}" if replay_memory else "Saved replay memory not found. Not restoring replay memory.")
|
841 |
+
self.memory = replay_memory if replay_memory else self.memory
|
842 |
+
|
843 |
+
if reset_exploration_rate:
|
844 |
+
print(f"Reset exploration rate option specified. Not restoring saved exploration rate {exploration_rate}. The current exploration rate is {self.exploration_rate}")
|
845 |
+
else:
|
846 |
+
print(f"Setting exploration rate to {exploration_rate} not loaded.")
|
847 |
+
self.exploration_rate = exploration_rate
|
848 |
+
|
849 |
+
|
lunar_lander.py
ADDED
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# File inspired by source: https://github.com/openai/gym/blob/master/gym/envs/box2d/lunar_lander.py
|
16 |
+
|
17 |
+
import argparse
|
18 |
+
import time
|
19 |
+
import os
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
import simulate as sm
|
23 |
+
import os
|
24 |
+
from pathlib import Path
|
25 |
+
from agent import DuelingDQNAgent, MetricLogger
|
26 |
+
from params import hyperparams
|
27 |
+
|
28 |
+
# This example reimplements the famous lunar lander reinforcement learning environment.
|
29 |
+
|
30 |
+
# CONSTANTS From source
|
31 |
+
# TODO implement scaling
|
32 |
+
SCALE = 30.0 # affects how fast-paced the game is, forces should be adjusted as well
|
33 |
+
|
34 |
+
# TODO integrate random initial forces
|
35 |
+
INITIAL_RANDOM = 1000.0 # Set 1500 to make game harder
|
36 |
+
|
37 |
+
# Lander construction
|
38 |
+
LANDER_POLY = np.array([(-17, -10, 0), (-17, 0, 0), (-14, 17, 0), (14, 17, 0), (17, 0, 0), (17, -10, 0)])[::-1] / SCALE
|
39 |
+
LEG_AWAY = 20
|
40 |
+
LEG_DOWN = -7
|
41 |
+
LEG_ANGLE = 0.25 # radians
|
42 |
+
LEG_W, LEG_H = 2, 8
|
43 |
+
|
44 |
+
LEG_RIGHT_POLY = (
|
45 |
+
np.array(
|
46 |
+
[
|
47 |
+
(LEG_AWAY, LEG_DOWN, 0),
|
48 |
+
(LEG_AWAY + LEG_H * np.sin(LEG_ANGLE), LEG_DOWN - LEG_H * np.cos(LEG_ANGLE), 0),
|
49 |
+
(
|
50 |
+
LEG_AWAY + LEG_H * np.sin(LEG_ANGLE) + LEG_W * np.sin(np.pi / 2 - LEG_ANGLE),
|
51 |
+
LEG_DOWN - LEG_H * np.cos(LEG_ANGLE) + LEG_W * np.cos(np.pi / 2 - LEG_ANGLE),
|
52 |
+
0,
|
53 |
+
),
|
54 |
+
(LEG_AWAY + LEG_W * np.sin(np.pi / 2 - LEG_ANGLE), LEG_DOWN + LEG_W * np.cos(np.pi / 2 - LEG_ANGLE), 0),
|
55 |
+
]
|
56 |
+
)
|
57 |
+
/ SCALE
|
58 |
+
)
|
59 |
+
|
60 |
+
LEG_LEFT_POLY = [[-x, y, z] for x, y, z in LEG_RIGHT_POLY][::-1]
|
61 |
+
LANDER_COLOR = [128 / 255, 102 / 255, 230 / 255]
|
62 |
+
|
63 |
+
# terrain construction
|
64 |
+
VIEWPORT_W = 600 # TODO integrate camera with these exact dimensions
|
65 |
+
VIEWPORT_H = 400
|
66 |
+
|
67 |
+
W = VIEWPORT_W / SCALE
|
68 |
+
H = VIEWPORT_H / SCALE
|
69 |
+
|
70 |
+
CHUNKS = 11
|
71 |
+
HEIGHTS = np.random.uniform(0, H / 2, size=(CHUNKS + 1,))
|
72 |
+
CHUNK_X = [W / (CHUNKS - 1) * i for i in range(CHUNKS)]
|
73 |
+
HELIPAD_x1 = CHUNK_X[CHUNKS // 2 - 1]
|
74 |
+
HELIPAD_x2 = CHUNK_X[CHUNKS // 2 + 1]
|
75 |
+
HELIPAD_y = H / 4
|
76 |
+
HEIGHTS[CHUNKS // 2 - 2] = HELIPAD_y
|
77 |
+
HEIGHTS[CHUNKS // 2 - 1] = HELIPAD_y
|
78 |
+
HEIGHTS[CHUNKS // 2 + 0] = HELIPAD_y
|
79 |
+
HEIGHTS[CHUNKS // 2 + 1] = HELIPAD_y
|
80 |
+
HEIGHTS[CHUNKS // 2 + 2] = HELIPAD_y
|
81 |
+
SMOOTH_Y = [0.33 * (HEIGHTS[i - 1] + HEIGHTS[i + 0] + HEIGHTS[i + 1]) for i in range(CHUNKS)]
|
82 |
+
|
83 |
+
# advanced features
|
84 |
+
MAIN_ENGINE_POWER = 13.0 # TODO integrate specific forces
|
85 |
+
SIDE_ENGINE_POWER = 0.6 # TODO integrate specific forces
|
86 |
+
LEG_SPRING_TORQUE = 40 # TODO integrate specific forces
|
87 |
+
SIDE_ENGINE_HEIGHT = 14.0 # TODO integrate specific forces
|
88 |
+
SIDE_ENGINE_AWAY = 12.0 # TODO integrate specific forces
|
89 |
+
|
90 |
+
LAND_POLY = (
|
91 |
+
[[CHUNK_X[0], SMOOTH_Y[0] - 3, 0]]
|
92 |
+
+ [[x, y, 0] for x, y in zip(CHUNK_X, SMOOTH_Y)]
|
93 |
+
+ [[CHUNK_X[-1], SMOOTH_Y[0] - 3, 0]]
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
def make_lander(engine="unity", engine_exe=""):
|
98 |
+
# Add sm scene
|
99 |
+
sc = sm.Scene(engine=engine, engine_exe=engine_exe)
|
100 |
+
|
101 |
+
# initial lander position sampling
|
102 |
+
lander_init_pos = (10, 15, 0) + np.random.uniform(2, 4, 3)
|
103 |
+
lander_init_pos[2] = 0.0 # z axis is always 0, for 2D
|
104 |
+
|
105 |
+
lander_material = sm.Material(base_color=LANDER_COLOR)
|
106 |
+
|
107 |
+
# create the lander polygons
|
108 |
+
|
109 |
+
# first, the main lander body
|
110 |
+
lander = sm.Polygon(
|
111 |
+
points=LANDER_POLY,
|
112 |
+
material=lander_material,
|
113 |
+
position=lander_init_pos,
|
114 |
+
name="lunar_lander",
|
115 |
+
is_actor=True,
|
116 |
+
physics_component=sm.RigidBodyComponent(
|
117 |
+
use_gravity=True,
|
118 |
+
constraints=["freeze_rotation_x", "freeze_rotation_y", "freeze_position_z"],
|
119 |
+
mass=1,
|
120 |
+
),
|
121 |
+
)
|
122 |
+
|
123 |
+
# extrude to make 3D visually.
|
124 |
+
lander.mesh.extrude((0, 0, -1), capping=True, inplace=True)
|
125 |
+
lander.actuator = sm.Actuator(
|
126 |
+
mapping=[
|
127 |
+
sm.ActionMapping("add_force", axis=[1, 0, 0], amplitude=5),
|
128 |
+
sm.ActionMapping("add_force", axis=[1, 0, 0], amplitude=-5),
|
129 |
+
sm.ActionMapping("add_force", axis=[0, 1, 0], amplitude=2.5),
|
130 |
+
],
|
131 |
+
n=3,
|
132 |
+
)
|
133 |
+
|
134 |
+
# add an invisible box as collider until convex meshes are completed
|
135 |
+
lander += sm.Box(
|
136 |
+
position=[0, np.min(LEG_RIGHT_POLY, axis=0)[1], -0.5],
|
137 |
+
bounds=[0.1, 2 * np.max(LEG_RIGHT_POLY, axis=0)[0], 1],
|
138 |
+
material=sm.Material.TRANSPARENT,
|
139 |
+
rotation=[0, 0, 90],
|
140 |
+
with_collider=True,
|
141 |
+
name="lander_collider_box_bottom",
|
142 |
+
)
|
143 |
+
lander += sm.Box(
|
144 |
+
position=[-0.6, 0, -0.5],
|
145 |
+
bounds=[0.1, 26 / SCALE, 1],
|
146 |
+
material=sm.Material.TRANSPARENT,
|
147 |
+
rotation=[0, 0, -15],
|
148 |
+
with_collider=True,
|
149 |
+
name="lander_collider_box_right",
|
150 |
+
)
|
151 |
+
lander += sm.Box(
|
152 |
+
position=[0.6, 0, -0.5],
|
153 |
+
bounds=[0.1, 26 / SCALE, 1],
|
154 |
+
material=sm.Material.TRANSPARENT,
|
155 |
+
rotation=[0, 0, 15],
|
156 |
+
with_collider=True,
|
157 |
+
name="lander_collider_box_left",
|
158 |
+
)
|
159 |
+
|
160 |
+
# add legs as children objects (they take positions as local coordinates!)
|
161 |
+
r_leg = sm.Polygon(
|
162 |
+
points=LEG_RIGHT_POLY,
|
163 |
+
material=lander_material,
|
164 |
+
parent=lander,
|
165 |
+
name="lander_r_leg",
|
166 |
+
# with_collider=True, # TODO can use this when convex colliders is added
|
167 |
+
)
|
168 |
+
r_leg.mesh.extrude((0, 0, -1), capping=True, inplace=True)
|
169 |
+
|
170 |
+
l_leg = sm.Polygon(
|
171 |
+
points=LEG_LEFT_POLY,
|
172 |
+
material=lander_material,
|
173 |
+
parent=lander,
|
174 |
+
name="lander_l_leg",
|
175 |
+
# with_collider=True, # TODO can use this when convex colliders is added
|
176 |
+
)
|
177 |
+
l_leg.mesh.extrude((0, 0, -1), capping=True, inplace=True)
|
178 |
+
|
179 |
+
# Create land object
|
180 |
+
land = sm.Polygon(
|
181 |
+
points=LAND_POLY[::-1], # Reversing vertex order so the normal faces the right direction
|
182 |
+
material=sm.Material.GRAY,
|
183 |
+
name="Moon",
|
184 |
+
)
|
185 |
+
land.mesh.extrude((0, 0, -1), capping=True, inplace=True)
|
186 |
+
|
187 |
+
# Create collider blocks for the land (non-convex meshes are TODO)
|
188 |
+
for i in range(len(CHUNK_X) - 1):
|
189 |
+
x1, x2 = CHUNK_X[i], CHUNK_X[i + 1]
|
190 |
+
y1, y2 = SMOOTH_Y[i], SMOOTH_Y[i + 1]
|
191 |
+
|
192 |
+
# compute rotation from generated coordinates
|
193 |
+
rotation = [0, 0, +90 + np.degrees(np.arctan2(y2 - (y1 + y2) / 2, (x2 - x1) / 2))]
|
194 |
+
block_i = sm.Box(
|
195 |
+
position=[(x1 + x2) / 2, (y1 + y2) / 2, -0.5],
|
196 |
+
bounds=[0.2, 1.025 * np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2), 1], # adjustment for better colliders
|
197 |
+
material=sm.Material.GRAY,
|
198 |
+
rotation=rotation,
|
199 |
+
with_collider=True,
|
200 |
+
name="land_collider_" + str(i),
|
201 |
+
)
|
202 |
+
sc += block_i
|
203 |
+
|
204 |
+
# add target triangle / cone for reward
|
205 |
+
sc += sm.Cone(
|
206 |
+
position=[(HELIPAD_x1 + HELIPAD_x2) / 2, HELIPAD_y, -0.5],
|
207 |
+
height=10 / SCALE,
|
208 |
+
radius=10 / SCALE,
|
209 |
+
material=sm.Material.YELLOW,
|
210 |
+
name="target",
|
211 |
+
)
|
212 |
+
|
213 |
+
# TODO add lander state sensors for state-based RL
|
214 |
+
sc += sm.StateSensor(
|
215 |
+
target_entity=sc.target,
|
216 |
+
reference_entity=lander,
|
217 |
+
properties=["position", "rotation", "distance"],
|
218 |
+
name="goal_sense",
|
219 |
+
)
|
220 |
+
|
221 |
+
# create Euclidean distance reward, scalar changes the reward to a cost
|
222 |
+
cost = sm.RewardFunction(
|
223 |
+
type="dense", entity_a=lander, entity_b=sc.target, scalar=-1
|
224 |
+
) # By default a dense reward equal to the distance between 2 entities
|
225 |
+
lander += cost
|
226 |
+
|
227 |
+
sc += lander
|
228 |
+
sc += land
|
229 |
+
|
230 |
+
return sc
|
231 |
+
|
232 |
+
|
233 |
+
def get_values(state):
|
234 |
+
return state.get("StateSensor")
|
235 |
+
|
236 |
+
def train(agent, env, logger):
|
237 |
+
episodes = 20000
|
238 |
+
for e in range(episodes):
|
239 |
+
|
240 |
+
state = env.reset()
|
241 |
+
# Play the game!
|
242 |
+
for i in range(100):
|
243 |
+
|
244 |
+
# Run agent on the state
|
245 |
+
action = agent.act(get_values(state))
|
246 |
+
# env.render()
|
247 |
+
# Agent performs action
|
248 |
+
next_state, reward, done, info = env.step(action)
|
249 |
+
|
250 |
+
print("####################")
|
251 |
+
print(done)
|
252 |
+
print("####################")
|
253 |
+
|
254 |
+
# Remember
|
255 |
+
agent.cache(get_values(state), get_values(next_state), action, reward, done)
|
256 |
+
|
257 |
+
# Learn
|
258 |
+
q, loss = agent.learn()
|
259 |
+
|
260 |
+
# Logging
|
261 |
+
logger.log_step(reward, loss, q)
|
262 |
+
|
263 |
+
# Update state
|
264 |
+
state = next_state
|
265 |
+
|
266 |
+
# Check if end of game
|
267 |
+
if done:
|
268 |
+
break
|
269 |
+
|
270 |
+
logger.log_episode(e)
|
271 |
+
|
272 |
+
if e % 20 == 0:
|
273 |
+
logger.record(episode=e, epsilon=agent.exploration_rate, step=agent.curr_step)
|
274 |
+
|
275 |
+
|
276 |
+
if __name__ == "__main__":
|
277 |
+
parser = argparse.ArgumentParser()
|
278 |
+
parser.add_argument("--build_exe", default="", type=str, required=False, help="Pre-built unity app for simulate")
|
279 |
+
parser.add_argument(
|
280 |
+
"--num_steps", default=100, type=int, required=False, help="number of steps to run the simulator"
|
281 |
+
)
|
282 |
+
args = parser.parse_args()
|
283 |
+
|
284 |
+
sc = make_lander(engine="unity", engine_exe=args.build_exe)
|
285 |
+
sc += sm.LightSun()
|
286 |
+
|
287 |
+
env = sm.RLEnv(sc, frame_skip=1)
|
288 |
+
env.reset()
|
289 |
+
|
290 |
+
# for i in range(500):
|
291 |
+
# print(sc.observation_space.sample())
|
292 |
+
# action = [sc.action_space.sample()]
|
293 |
+
# print("###############")
|
294 |
+
# print(action)
|
295 |
+
# obs, reward, done, info = env.step(action)
|
296 |
+
# print(obs)
|
297 |
+
# print(f"step {i}, reward {reward[0]}")
|
298 |
+
# time.sleep(0.1)
|
299 |
+
|
300 |
+
# env.close()
|
301 |
+
|
302 |
+
checkpoint = None
|
303 |
+
# checkpoint = Path('checkpoints/latest/airstriker_net_3.chkpt')
|
304 |
+
|
305 |
+
path = "checkpoints/lunar-lander-dueling-dqn-rc"
|
306 |
+
save_dir = Path(path)
|
307 |
+
|
308 |
+
isExist = os.path.exists(path)
|
309 |
+
if not isExist:
|
310 |
+
os.makedirs(path)
|
311 |
+
|
312 |
+
logger = MetricLogger(save_dir)
|
313 |
+
|
314 |
+
print("Training Dueling DQN Agent with step decay!")
|
315 |
+
agent = DuelingDQNAgent(
|
316 |
+
state_dim=7,
|
317 |
+
action_dim=env.action_space.n,
|
318 |
+
save_dir=save_dir,
|
319 |
+
checkpoint=checkpoint,
|
320 |
+
**hyperparams
|
321 |
+
)
|
322 |
+
# print("Training Dueling DQN Agent!")
|
323 |
+
# agent = DuelingDQNAgent(
|
324 |
+
# state_dim=8,
|
325 |
+
# action_dim=env.action_space.n,
|
326 |
+
# save_dir=save_dir,
|
327 |
+
# checkpoint=checkpoint,
|
328 |
+
# **hyperparams
|
329 |
+
# )
|
330 |
+
|
331 |
+
# fill_memory(agent, env, 5000)
|
332 |
+
train(agent, env, logger)
|
params.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
hyperparams = dict(
|
2 |
+
batch_size=128,
|
3 |
+
exploration_rate=1,
|
4 |
+
exploration_rate_decay=0.99999,
|
5 |
+
exploration_rate_min=0.01,
|
6 |
+
training_frequency=1,
|
7 |
+
target_network_sync_frequency=20,
|
8 |
+
max_memory_size=1000000,
|
9 |
+
learning_rate=0.001,
|
10 |
+
learning_starts=128,
|
11 |
+
save_frequency=100000
|
12 |
+
)
|