File size: 15,215 Bytes
e085e3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
import torch
import numpy as np
import random
import torch.nn as nn
import copy
import time, datetime
import matplotlib.pyplot as plt
from collections import deque
from torch.utils.tensorboard import SummaryWriter
import pickle
class DQNet(nn.Module):
"""mini cnn structure
input -> (conv2d + relu) x 3 -> flatten -> (dense + relu) x 2 -> output
"""
def __init__(self, input_dim, output_dim):
super().__init__()
print("#################################")
print("#################################")
print(input_dim)
print(output_dim)
print("#################################")
print("#################################")
c, h, w = input_dim
# if h != 84:
# raise ValueError(f"Expecting input height: 84, got: {h}")
# if w != 84:
# raise ValueError(f"Expecting input width: 84, got: {w}")
self.online = nn.Sequential(
nn.Conv2d(in_channels=c, out_channels=32, kernel_size=8, stride=4),
nn.ReLU(),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1),
nn.ReLU(),
nn.Flatten(),
nn.Linear(17024, 512),
nn.ReLU(),
nn.Linear(512, output_dim),
)
self.target = copy.deepcopy(self.online)
# Q_target parameters are frozen.
for p in self.target.parameters():
p.requires_grad = False
def forward(self, input, model):
if model == "online":
return self.online(input)
elif model == "target":
return self.target(input)
class MetricLogger:
def __init__(self, save_dir):
self.writer = SummaryWriter(log_dir=save_dir)
self.save_log = save_dir / "log"
with open(self.save_log, "w") as f:
f.write(
f"{'Episode':>8}{'Step':>8}{'Epsilon':>10}{'MeanReward':>15}"
f"{'MeanLength':>15}{'MeanLoss':>15}{'MeanQValue':>15}"
f"{'TimeDelta':>15}{'Time':>20}\n"
)
self.ep_rewards_plot = save_dir / "reward_plot.jpg"
self.ep_lengths_plot = save_dir / "length_plot.jpg"
self.ep_avg_losses_plot = save_dir / "loss_plot.jpg"
self.ep_avg_qs_plot = save_dir / "q_plot.jpg"
# History metrics
self.ep_rewards = []
self.ep_lengths = []
self.ep_avg_losses = []
self.ep_avg_qs = []
# Moving averages, added for every call to record()
self.moving_avg_ep_rewards = []
self.moving_avg_ep_lengths = []
self.moving_avg_ep_avg_losses = []
self.moving_avg_ep_avg_qs = []
# Current episode metric
self.init_episode()
# Timing
self.record_time = time.time()
def log_step(self, reward, loss, q):
self.curr_ep_reward += reward
self.curr_ep_length += 1
if loss:
self.curr_ep_loss += loss
self.curr_ep_q += q
self.curr_ep_loss_length += 1
def log_episode(self, episode_number):
"Mark end of episode"
self.ep_rewards.append(self.curr_ep_reward)
self.ep_lengths.append(self.curr_ep_length)
if self.curr_ep_loss_length == 0:
ep_avg_loss = 0
ep_avg_q = 0
else:
ep_avg_loss = np.round(self.curr_ep_loss / self.curr_ep_loss_length, 5)
ep_avg_q = np.round(self.curr_ep_q / self.curr_ep_loss_length, 5)
self.ep_avg_losses.append(ep_avg_loss)
self.ep_avg_qs.append(ep_avg_q)
self.writer.add_scalar("Avg Loss for episode", ep_avg_loss, episode_number)
self.writer.add_scalar("Avg Q value for episode", ep_avg_q, episode_number)
self.writer.flush()
self.init_episode()
def init_episode(self):
self.curr_ep_reward = 0.0
self.curr_ep_length = 0
self.curr_ep_loss = 0.0
self.curr_ep_q = 0.0
self.curr_ep_loss_length = 0
def record(self, episode, epsilon, step):
mean_ep_reward = np.round(np.mean(self.ep_rewards[-100:]), 3)
mean_ep_length = np.round(np.mean(self.ep_lengths[-100:]), 3)
mean_ep_loss = np.round(np.mean(self.ep_avg_losses[-100:]), 3)
mean_ep_q = np.round(np.mean(self.ep_avg_qs[-100:]), 3)
self.moving_avg_ep_rewards.append(mean_ep_reward)
self.moving_avg_ep_lengths.append(mean_ep_length)
self.moving_avg_ep_avg_losses.append(mean_ep_loss)
self.moving_avg_ep_avg_qs.append(mean_ep_q)
last_record_time = self.record_time
self.record_time = time.time()
time_since_last_record = np.round(self.record_time - last_record_time, 3)
print(
f"Episode {episode} - "
f"Step {step} - "
f"Epsilon {epsilon} - "
f"Mean Reward {mean_ep_reward} - "
f"Mean Length {mean_ep_length} - "
f"Mean Loss {mean_ep_loss} - "
f"Mean Q Value {mean_ep_q} - "
f"Time Delta {time_since_last_record} - "
f"Time {datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S')}"
)
self.writer.add_scalar("Mean reward last 100 episodes", mean_ep_reward, episode)
self.writer.add_scalar("Mean length last 100 episodes", mean_ep_length, episode)
self.writer.add_scalar("Mean loss last 100 episodes", mean_ep_loss, episode)
self.writer.add_scalar("Mean reward last 100 episodes", mean_ep_reward, episode)
self.writer.add_scalar("Epsilon value", epsilon, episode)
self.writer.add_scalar("Mean Q Value last 100 episodes", mean_ep_q, episode)
self.writer.flush()
with open(self.save_log, "a") as f:
f.write(
f"{episode:8d}{step:8d}{epsilon:10.3f}"
f"{mean_ep_reward:15.3f}{mean_ep_length:15.3f}{mean_ep_loss:15.3f}{mean_ep_q:15.3f}"
f"{time_since_last_record:15.3f}"
f"{datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S'):>20}\n"
)
for metric in ["ep_rewards", "ep_lengths", "ep_avg_losses", "ep_avg_qs"]:
plt.plot(getattr(self, f"moving_avg_{metric}"))
plt.savefig(getattr(self, f"{metric}_plot"))
plt.clf()
class DQNAgent:
def __init__(self,
state_dim,
action_dim,
save_dir,
checkpoint=None,
learning_rate=0.00025,
max_memory_size=100000,
batch_size=32,
exploration_rate=1,
exploration_rate_decay=0.9999999,
exploration_rate_min=0.1,
training_frequency=1,
learning_starts=1000,
target_network_sync_frequency=500,
reset_exploration_rate=False,
save_frequency=100000,
gamma=0.9,
load_replay_buffer=True):
self.state_dim = state_dim
self.action_dim = action_dim
self.max_memory_size = max_memory_size
self.memory = deque(maxlen=max_memory_size)
self.batch_size = batch_size
self.exploration_rate = exploration_rate
self.exploration_rate_decay = exploration_rate_decay
self.exploration_rate_min = exploration_rate_min
self.gamma = gamma
self.curr_step = 0
self.learning_starts = learning_starts # min. experiences before training
self.training_frequency = training_frequency # no. of experiences between updates to Q_online
self.target_network_sync_frequency = target_network_sync_frequency # no. of experiences between Q_target & Q_online sync
self.save_every = save_frequency # no. of experiences between saving Mario Net
self.save_dir = save_dir
self.use_cuda = torch.cuda.is_available()
# Mario's DNN to predict the most optimal action - we implement this in the Learn section
self.net = DQNet(self.state_dim, self.action_dim).float()
if self.use_cuda:
self.net = self.net.to(device='cuda')
if checkpoint:
self.load(checkpoint, reset_exploration_rate, load_replay_buffer)
self.optimizer = torch.optim.AdamW(self.net.parameters(), lr=learning_rate, amsgrad=True)
self.loss_fn = torch.nn.SmoothL1Loss()
def act(self, state):
"""
Given a state, choose an epsilon-greedy action and update value of step.
Inputs:
state(LazyFrame): A single observation of the current state, dimension is (state_dim)
Outputs:
action_idx (int): An integer representing which action Mario will perform
"""
# EXPLORE
if np.random.rand() < self.exploration_rate:
action_idx = np.random.randint(self.action_dim)
# EXPLOIT
else:
state = torch.FloatTensor(state).cuda() if self.use_cuda else torch.FloatTensor(state)
state = state.unsqueeze(0)
action_values = self.net(state, model='online')
action_idx = torch.argmax(action_values, axis=1).item()
# decrease exploration_rate
self.exploration_rate *= self.exploration_rate_decay
self.exploration_rate = max(self.exploration_rate_min, self.exploration_rate)
# increment step
self.curr_step += 1
return action_idx
def cache(self, state, next_state, action, reward, done):
"""
Store the experience to self.memory (replay buffer)
Inputs:
state (LazyFrame),
next_state (LazyFrame),
action (int),
reward (float),
done(bool))
"""
state = torch.FloatTensor(state).cuda() if self.use_cuda else torch.FloatTensor(state)
next_state = torch.FloatTensor(next_state).cuda() if self.use_cuda else torch.FloatTensor(next_state)
action = torch.LongTensor([action]).cuda() if self.use_cuda else torch.LongTensor([action])
reward = torch.DoubleTensor([reward]).cuda() if self.use_cuda else torch.DoubleTensor([reward])
done = torch.BoolTensor([done]).cuda() if self.use_cuda else torch.BoolTensor([done])
self.memory.append( (state, next_state, action, reward, done,) )
def recall(self):
"""
Retrieve a batch of experiences from memory
"""
batch = random.sample(self.memory, self.batch_size)
state, next_state, action, reward, done = map(torch.stack, zip(*batch))
return state, next_state, action.squeeze(), reward.squeeze(), done.squeeze()
# def td_estimate(self, state, action):
# current_Q = self.net(state, model='online')[np.arange(0, self.batch_size), action] # Q_online(s,a)
# return current_Q
# @torch.no_grad()
# def td_target(self, reward, next_state, done):
# next_state_Q = self.net(next_state, model='online')
# best_action = torch.argmax(next_state_Q, axis=1)
# next_Q = self.net(next_state, model='target')[np.arange(0, self.batch_size), best_action]
# return (reward + (1 - done.float()) * self.gamma * next_Q).float()
def td_estimate(self, states, actions):
actions = actions.reshape(-1, 1)
predicted_qs = self.net(states, model='online')# Q_online(s,a)
predicted_qs = predicted_qs.gather(1, actions)
return predicted_qs
@torch.no_grad()
def td_target(self, rewards, next_states, dones):
rewards = rewards.reshape(-1, 1)
dones = dones.reshape(-1, 1)
target_qs = self.net(next_states, model='target')
target_qs = torch.max(target_qs, dim=1).values
target_qs = target_qs.reshape(-1, 1)
target_qs[dones] = 0.0
return (rewards + (self.gamma * target_qs))
def update_Q_online(self, td_estimate, td_target) :
loss = self.loss_fn(td_estimate, td_target)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return loss.item()
def sync_Q_target(self):
self.net.target.load_state_dict(self.net.online.state_dict())
def learn(self):
if self.curr_step % self.target_network_sync_frequency == 0:
self.sync_Q_target()
if self.curr_step % self.save_every == 0:
self.save()
if self.curr_step < self.learning_starts:
return None, None
if self.curr_step % self.training_frequency != 0:
return None, None
# Sample from memory
state, next_state, action, reward, done = self.recall()
# Get TD Estimate
td_est = self.td_estimate(state, action)
# Get TD Target
td_tgt = self.td_target(reward, next_state, done)
# Backpropagate loss through Q_online
loss = self.update_Q_online(td_est, td_tgt)
return (td_est.mean().item(), loss)
def save(self):
save_path = self.save_dir / f"airstriker_net_{int(self.curr_step // self.save_every)}.chkpt"
torch.save(
dict(
model=self.net.state_dict(),
exploration_rate=self.exploration_rate,
replay_memory=self.memory
),
save_path
)
print(f"Airstriker model saved to {save_path} at step {self.curr_step}")
def load(self, load_path, reset_exploration_rate, load_replay_buffer):
if not load_path.exists():
raise ValueError(f"{load_path} does not exist")
ckp = torch.load(load_path, map_location=('cuda' if self.use_cuda else 'cpu'))
exploration_rate = ckp.get('exploration_rate')
state_dict = ckp.get('model')
print(f"Loading model at {load_path} with exploration rate {exploration_rate}")
self.net.load_state_dict(state_dict)
if load_replay_buffer:
replay_memory = ckp.get('replay_memory')
print(f"Loading replay memory. Len {len(replay_memory)}" if replay_memory else "Saved replay memory not found. Not restoring replay memory.")
self.memory = replay_memory if replay_memory else self.memory
if reset_exploration_rate:
print(f"Reset exploration rate option specified. Not restoring saved exploration rate {exploration_rate}. The current exploration rate is {self.exploration_rate}")
else:
print(f"Setting exploration rate to {exploration_rate} not loaded.")
self.exploration_rate = exploration_rate
class DDQNAgent(DQNAgent):
@torch.no_grad()
def td_target(self, rewards, next_states, dones):
print("Double dqn -----------------------")
rewards = rewards.reshape(-1, 1)
dones = dones.reshape(-1, 1)
q_vals = self.net(next_states, model='online')
target_actions = torch.argmax(q_vals, axis=1)
target_actions = target_actions.reshape(-1, 1)
target_qs = self.net(next_states, model='target').gather(target_actions, 1)
target_qs = target_qs.reshape(-1, 1)
target_qs[dones] = 0.0
return (rewards + (self.gamma * target_qs))
|