File size: 24,327 Bytes
e085e3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
import torch 
import numpy as np
import random
import torch.nn as nn
import copy
import time, datetime
import matplotlib.pyplot as plt
from collections import deque
from torch.utils.tensorboard import SummaryWriter


class DQNet(nn.Module):
    """mini cnn structure
  input -> (conv2d + relu) x 3 -> flatten -> (dense + relu) x 2 -> output
  """

    def __init__(self, input_dim, output_dim):
        super().__init__()
        print("#################################")
        print("#################################")
        print(input_dim)
        print(output_dim)
        print("#################################")
        print("#################################")
        c, h, w = input_dim
        

        self.online = nn.Sequential(
            nn.Conv2d(in_channels=c, out_channels=32, kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1),
            nn.ReLU(),
            nn.Flatten(),
            nn.Linear(7168, 512),
            nn.ReLU(),
            nn.Linear(512, output_dim),
        )

        
        self.target = copy.deepcopy(self.online)

        # Q_target parameters are frozen.
        for p in self.target.parameters():
            p.requires_grad = False

    def forward(self, input, model):
        if model == "online":
            return self.online(input)
        elif model == "target":
            return self.target(input)



class MetricLogger:
    def __init__(self, save_dir):
        self.writer = SummaryWriter(log_dir=save_dir)
        self.save_log = save_dir / "log"
        with open(self.save_log, "w") as f:
            f.write(
                f"{'Episode':>8}{'Step':>8}{'Epsilon':>10}{'MeanReward':>15}"
                f"{'MeanLength':>15}{'MeanLoss':>15}{'MeanQValue':>15}"
                f"{'TimeDelta':>15}{'Time':>20}\n"
            )
        self.ep_rewards_plot = save_dir / "reward_plot.jpg"
        self.ep_lengths_plot = save_dir / "length_plot.jpg"
        self.ep_avg_losses_plot = save_dir / "loss_plot.jpg"
        self.ep_avg_qs_plot = save_dir / "q_plot.jpg"

        # History metrics
        self.ep_rewards = []
        self.ep_lengths = []
        self.ep_avg_losses = []
        self.ep_avg_qs = []

        # Moving averages, added for every call to record()
        self.moving_avg_ep_rewards = []
        self.moving_avg_ep_lengths = []
        self.moving_avg_ep_avg_losses = []
        self.moving_avg_ep_avg_qs = []

        # Current episode metric
        self.init_episode()

        # Timing
        self.record_time = time.time()

    def log_step(self, reward, loss, q):
        self.curr_ep_reward += reward
        self.curr_ep_length += 1
        if loss:
            self.curr_ep_loss += loss
            self.curr_ep_q += q
            self.curr_ep_loss_length += 1

    def log_episode(self, episode_number):
        "Mark end of episode"
        self.ep_rewards.append(self.curr_ep_reward)
        self.ep_lengths.append(self.curr_ep_length)
        if self.curr_ep_loss_length == 0:
            ep_avg_loss = 0
            ep_avg_q = 0
        else:
            ep_avg_loss = np.round(self.curr_ep_loss / self.curr_ep_loss_length, 5)
            ep_avg_q = np.round(self.curr_ep_q / self.curr_ep_loss_length, 5)
        self.ep_avg_losses.append(ep_avg_loss)
        self.ep_avg_qs.append(ep_avg_q)
        self.writer.add_scalar("Avg Loss for episode", ep_avg_loss, episode_number)
        self.writer.add_scalar("Avg Q value for episode", ep_avg_q, episode_number)
        self.writer.flush()
        self.init_episode()

    def init_episode(self):
        self.curr_ep_reward = 0.0
        self.curr_ep_length = 0
        self.curr_ep_loss = 0.0
        self.curr_ep_q = 0.0
        self.curr_ep_loss_length = 0

    def record(self, episode, epsilon, step):
        mean_ep_reward = np.round(np.mean(self.ep_rewards[-100:]), 3)
        mean_ep_length = np.round(np.mean(self.ep_lengths[-100:]), 3)
        mean_ep_loss = np.round(np.mean(self.ep_avg_losses[-100:]), 3)
        mean_ep_q = np.round(np.mean(self.ep_avg_qs[-100:]), 3)
        self.moving_avg_ep_rewards.append(mean_ep_reward)
        self.moving_avg_ep_lengths.append(mean_ep_length)
        self.moving_avg_ep_avg_losses.append(mean_ep_loss)
        self.moving_avg_ep_avg_qs.append(mean_ep_q)

        last_record_time = self.record_time
        self.record_time = time.time()
        time_since_last_record = np.round(self.record_time - last_record_time, 3)

        print(
            f"Episode {episode} - "
            f"Step {step} - "
            f"Epsilon {epsilon} - "
            f"Mean Reward {mean_ep_reward} - "
            f"Mean Length {mean_ep_length} - "
            f"Mean Loss {mean_ep_loss} - "
            f"Mean Q Value {mean_ep_q} - "
            f"Time Delta {time_since_last_record} - "
            f"Time {datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S')}"
        )
        self.writer.add_scalar("Mean reward last 100 episodes", mean_ep_reward, episode)
        self.writer.add_scalar("Mean length last 100 episodes", mean_ep_length, episode)
        self.writer.add_scalar("Mean loss last 100 episodes", mean_ep_loss, episode)
        self.writer.add_scalar("Mean reward last 100 episodes", mean_ep_reward, episode)
        self.writer.add_scalar("Epsilon value", epsilon, episode)
        self.writer.add_scalar("Mean Q Value last 100 episodes", mean_ep_q, episode)
        self.writer.flush()
        with open(self.save_log, "a") as f:
            f.write(
                f"{episode:8d}{step:8d}{epsilon:10.3f}"
                f"{mean_ep_reward:15.3f}{mean_ep_length:15.3f}{mean_ep_loss:15.3f}{mean_ep_q:15.3f}"
                f"{time_since_last_record:15.3f}"
                f"{datetime.datetime.now().strftime('%Y-%m-%dT%H:%M:%S'):>20}\n"
            )

        for metric in ["ep_rewards", "ep_lengths", "ep_avg_losses", "ep_avg_qs"]:
            plt.plot(getattr(self, f"moving_avg_{metric}"))
            plt.savefig(getattr(self, f"{metric}_plot"))
            plt.clf()


class DQNAgent:
    def __init__(self, 
                 state_dim, 
                 action_dim, 
                 save_dir, 
                 checkpoint=None, 
                 learning_rate=0.00025, 
                 max_memory_size=100000, 
                 batch_size=32,
                 exploration_rate=1,
                 exploration_rate_decay=0.9999999,
                 exploration_rate_min=0.1,
                 training_frequency=1,
                 learning_starts=1000,
                 target_network_sync_frequency=500,
                 reset_exploration_rate=False, 
                 save_frequency=100000,
                 gamma=0.9,
                 load_replay_buffer=True):
        self.state_dim = state_dim
        self.action_dim = action_dim
        self.max_memory_size = max_memory_size
        self.memory = deque(maxlen=max_memory_size)
        self.batch_size = batch_size

        self.exploration_rate = exploration_rate
        self.exploration_rate_decay = exploration_rate_decay
        self.exploration_rate_min = exploration_rate_min
        self.gamma = gamma

        self.curr_step = 0
        self.learning_starts = learning_starts  # min. experiences before training

        self.training_frequency = training_frequency   # no. of experiences between updates to Q_online
        self.target_network_sync_frequency = target_network_sync_frequency  # no. of experiences between Q_target & Q_online sync

        self.save_every = save_frequency   # no. of experiences between saving the network
        self.save_dir = save_dir

        self.use_cuda = torch.cuda.is_available()

        self.net = DQNet(self.state_dim, self.action_dim).float()
        if self.use_cuda:
            self.net = self.net.to(device='cuda')
        if checkpoint:
            self.load(checkpoint, reset_exploration_rate, load_replay_buffer)

        self.optimizer = torch.optim.AdamW(self.net.parameters(), lr=learning_rate, amsgrad=True)
        self.loss_fn = torch.nn.SmoothL1Loss()


    def act(self, state):
        """
        Given a state, choose an epsilon-greedy action and update value of step.

        Inputs:
        state(LazyFrame): A single observation of the current state, dimension is (state_dim)
        Outputs:
        action_idx (int): An integer representing which action the agent will perform
        """
        # EXPLORE
        if np.random.rand() < self.exploration_rate:
            action_idx = np.random.randint(self.action_dim)

        # EXPLOIT
        else:
            state = torch.FloatTensor(state).cuda() if self.use_cuda else torch.FloatTensor(state)
            state = state.unsqueeze(0)
            action_values = self.net(state, model='online')
            action_idx = torch.argmax(action_values, axis=1).item()

        # decrease exploration_rate
        self.exploration_rate *= self.exploration_rate_decay
        self.exploration_rate = max(self.exploration_rate_min, self.exploration_rate)

        # increment step
        self.curr_step += 1
        return action_idx

    def cache(self, state, next_state, action, reward, done):
        """
        Store the experience to self.memory (replay buffer)

        Inputs:
        state (LazyFrame),
        next_state (LazyFrame),
        action (int),
        reward (float),
        done(bool))
        """
        state = torch.FloatTensor(state).cuda() if self.use_cuda else torch.FloatTensor(state)
        next_state = torch.FloatTensor(next_state).cuda() if self.use_cuda else torch.FloatTensor(next_state)
        action = torch.LongTensor([action]).cuda() if self.use_cuda else torch.LongTensor([action])
        reward = torch.DoubleTensor([reward]).cuda() if self.use_cuda else torch.DoubleTensor([reward])
        done = torch.BoolTensor([done]).cuda() if self.use_cuda else torch.BoolTensor([done])

        self.memory.append( (state, next_state, action, reward, done,) )


    def recall(self):
        """
        Retrieve a batch of experiences from memory
        """
        batch = random.sample(self.memory, self.batch_size)
        state, next_state, action, reward, done = map(torch.stack, zip(*batch))
        return state, next_state, action.squeeze(), reward.squeeze(), done.squeeze()


    def td_estimate(self, states, actions):
        actions = actions.reshape(-1, 1)
        predicted_qs = self.net(states, model='online')# Q_online(s,a)
        predicted_qs = predicted_qs.gather(1, actions)
        return predicted_qs


    @torch.no_grad()
    def td_target(self, rewards, next_states, dones):
        rewards = rewards.reshape(-1, 1)
        dones = dones.reshape(-1, 1)
        target_qs = self.net(next_states, model='target')
        target_qs = torch.max(target_qs, dim=1).values
        target_qs = target_qs.reshape(-1, 1)
        target_qs[dones] = 0.0
        return (rewards + (self.gamma * target_qs))

    def update_Q_online(self, td_estimate, td_target) :
        loss = self.loss_fn(td_estimate, td_target)
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        return loss.item()


    def sync_Q_target(self):
        self.net.target.load_state_dict(self.net.online.state_dict())


    def learn(self):
        if self.curr_step % self.target_network_sync_frequency == 0:
            self.sync_Q_target()

        if self.curr_step % self.save_every == 0:
            self.save()

        if self.curr_step < self.learning_starts:
            return None, None

        if self.curr_step % self.training_frequency != 0:
            return None, None

        # Sample from memory
        state, next_state, action, reward, done = self.recall()

        # Get TD Estimate
        td_est = self.td_estimate(state, action)

        # Get TD Target
        td_tgt = self.td_target(reward, next_state, done)

        # Backpropagate loss through Q_online
        loss = self.update_Q_online(td_est, td_tgt)

        return (td_est.mean().item(), loss)


    def save(self):
        save_path = self.save_dir / f"airstriker_net_{int(self.curr_step // self.save_every)}.chkpt"
        torch.save(
            dict(
                model=self.net.state_dict(),
                exploration_rate=self.exploration_rate,
                replay_memory=self.memory
            ),
            save_path
        )

        print(f"Airstriker model saved to {save_path} at step {self.curr_step}")


    def load(self, load_path, reset_exploration_rate, load_replay_buffer):
        if not load_path.exists():
            raise ValueError(f"{load_path} does not exist")

        ckp = torch.load(load_path, map_location=('cuda' if self.use_cuda else 'cpu'))
        exploration_rate = ckp.get('exploration_rate')
        state_dict = ckp.get('model')
        

        print(f"Loading model at {load_path} with exploration rate {exploration_rate}")
        self.net.load_state_dict(state_dict)

        if load_replay_buffer:
            replay_memory = ckp.get('replay_memory')
            print(f"Loading replay memory. Len {len(replay_memory)}" if replay_memory else "Saved replay memory not found. Not restoring replay memory.")
            self.memory = replay_memory if replay_memory else self.memory

        if reset_exploration_rate:
            print(f"Reset exploration rate option specified. Not restoring saved exploration rate {exploration_rate}. The current exploration rate is {self.exploration_rate}")
        else:
            print(f"Setting exploration rate to {exploration_rate} not loaded.")
            self.exploration_rate = exploration_rate


class DDQNAgent(DQNAgent):
    @torch.no_grad()
    def td_target(self, rewards, next_states, dones):
        rewards = rewards.reshape(-1, 1)
        dones = dones.reshape(-1, 1)
        q_vals = self.net(next_states, model='online')
        target_actions = torch.argmax(q_vals, axis=1)
        target_actions = target_actions.reshape(-1, 1)
        
        target_qs = self.net(next_states, model='target')
        target_qs = target_qs.gather(1, target_actions)
        target_qs = target_qs.reshape(-1, 1)
        target_qs[dones] = 0.0
        return (rewards + (self.gamma * target_qs))


class DuelingDQNet(nn.Module):
    def __init__(self, input_dim, output_dim):
        super().__init__()
        print("#################################")
        print("#################################")
        print(input_dim)
        print(output_dim)
        print("#################################")
        print("#################################")
        c, h, w = input_dim
        

        self.conv_layer = nn.Sequential(
            nn.Conv2d(in_channels=c, out_channels=32, kernel_size=8, stride=4),
            nn.ReLU(),
            nn.Conv2d(in_channels=32, out_channels=64, kernel_size=4, stride=2),
            nn.ReLU(),
            nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1),
            nn.ReLU(),
           
        )

        
        self.value_layer = nn.Sequential(
            nn.Linear(7168, 128),
            nn.ReLU(),
            nn.Linear(128, 1)
        )

        self.advantage_layer = nn.Sequential(
            nn.Linear(7168, 128),
            nn.ReLU(),
            nn.Linear(128, output_dim)
        )

    def forward(self, state):
        conv_output = self.conv_layer(state)
        conv_output = conv_output.view(conv_output.size(0), -1)
        value = self.value_layer(conv_output)
        advantage = self.advantage_layer(conv_output)
        q_value = value + (advantage - advantage.mean())
        
        return q_value


class DuelingDQNAgent:
    def __init__(self, 
                 state_dim, 
                 action_dim, 
                 save_dir, 
                 checkpoint=None, 
                 learning_rate=0.00025, 
                 max_memory_size=100000, 
                 batch_size=32,
                 exploration_rate=1,
                 exploration_rate_decay=0.9999999,
                 exploration_rate_min=0.1,
                 training_frequency=1,
                 learning_starts=1000,
                 target_network_sync_frequency=500,
                 reset_exploration_rate=False, 
                 save_frequency=100000,
                 gamma=0.9,
                 load_replay_buffer=True):
        self.state_dim = state_dim
        self.action_dim = action_dim
        self.max_memory_size = max_memory_size
        self.memory = deque(maxlen=max_memory_size)
        self.batch_size = batch_size

        self.exploration_rate = exploration_rate
        self.exploration_rate_decay = exploration_rate_decay
        self.exploration_rate_min = exploration_rate_min
        self.gamma = gamma

        self.curr_step = 0
        self.learning_starts = learning_starts  # min. experiences before training

        self.training_frequency = training_frequency   # no. of experiences between updates to Q_online
        self.target_network_sync_frequency = target_network_sync_frequency  # no. of experiences between Q_target & Q_online sync

        self.save_every = save_frequency   # no. of experiences between saving the network
        self.save_dir = save_dir

        self.use_cuda = torch.cuda.is_available()

        
        self.online_net = DuelingDQNet(self.state_dim, self.action_dim).float()
        self.target_net = copy.deepcopy(self.online_net)
        # Q_target parameters are frozen.
        for p in self.target_net.parameters():
            p.requires_grad = False

        if self.use_cuda:
            self.online_net = self.online_net(device='cuda')
            self.target_net = self.target_net(device='cuda')
        if checkpoint:
            self.load(checkpoint, reset_exploration_rate, load_replay_buffer)

        self.optimizer = torch.optim.AdamW(self.online_net.parameters(), lr=learning_rate, amsgrad=True)
        self.loss_fn = torch.nn.SmoothL1Loss()


    def act(self, state):
        """
        Given a state, choose an epsilon-greedy action and update value of step.

        Inputs:
        state(LazyFrame): A single observation of the current state, dimension is (state_dim)
        Outputs:
        action_idx (int): An integer representing which action the agent will perform
        """
        # EXPLORE
        if np.random.rand() < self.exploration_rate:
            action_idx = np.random.randint(self.action_dim)

        # EXPLOIT
        else:
            state = torch.FloatTensor(state).cuda() if self.use_cuda else torch.FloatTensor(state)
            state = state.unsqueeze(0)
            action_values = self.online_net(state)
            action_idx = torch.argmax(action_values, axis=1).item()

        # decrease exploration_rate
        self.exploration_rate *= self.exploration_rate_decay
        self.exploration_rate = max(self.exploration_rate_min, self.exploration_rate)

        # increment step
        self.curr_step += 1
        return action_idx

    def cache(self, state, next_state, action, reward, done):
        """
        Store the experience to self.memory (replay buffer)

        Inputs:
        state (LazyFrame),
        next_state (LazyFrame),
        action (int),
        reward (float),
        done(bool))
        """
        state = torch.FloatTensor(state).cuda() if self.use_cuda else torch.FloatTensor(state)
        next_state = torch.FloatTensor(next_state).cuda() if self.use_cuda else torch.FloatTensor(next_state)
        action = torch.LongTensor([action]).cuda() if self.use_cuda else torch.LongTensor([action])
        reward = torch.DoubleTensor([reward]).cuda() if self.use_cuda else torch.DoubleTensor([reward])
        done = torch.BoolTensor([done]).cuda() if self.use_cuda else torch.BoolTensor([done])

        self.memory.append( (state, next_state, action, reward, done,) )


    def recall(self):
        """
        Retrieve a batch of experiences from memory
        """
        batch = random.sample(self.memory, self.batch_size)
        state, next_state, action, reward, done = map(torch.stack, zip(*batch))
        return state, next_state, action.squeeze(), reward.squeeze(), done.squeeze()


    def td_estimate(self, states, actions):
        actions = actions.reshape(-1, 1)
        predicted_qs = self.online_net(states)# Q_online(s,a)
        predicted_qs = predicted_qs.gather(1, actions)
        return predicted_qs


    @torch.no_grad()
    def td_target(self, rewards, next_states, dones):
        rewards = rewards.reshape(-1, 1)
        dones = dones.reshape(-1, 1)
        target_qs = self.target_net.forward(next_states)
        target_qs = torch.max(target_qs, dim=1).values
        target_qs = target_qs.reshape(-1, 1)
        target_qs[dones] = 0.0
        return (rewards + (self.gamma * target_qs))

    def update_Q_online(self, td_estimate, td_target) :
        loss = self.loss_fn(td_estimate, td_target)
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()
        return loss.item()


    def sync_Q_target(self):
        self.target_net.load_state_dict(self.online_net.state_dict())


    def learn(self):
        if self.curr_step % self.target_network_sync_frequency == 0:
            self.sync_Q_target()

        if self.curr_step % self.save_every == 0:
            self.save()

        if self.curr_step < self.learning_starts:
            return None, None

        if self.curr_step % self.training_frequency != 0:
            return None, None

        # Sample from memory
        state, next_state, action, reward, done = self.recall()

        # Get TD Estimate
        td_est = self.td_estimate(state, action)

        # Get TD Target
        td_tgt = self.td_target(reward, next_state, done)

        # Backpropagate loss through Q_online
        loss = self.update_Q_online(td_est, td_tgt)

        return (td_est.mean().item(), loss)


    def save(self):
        save_path = self.save_dir / f"airstriker_net_{int(self.curr_step // self.save_every)}.chkpt"
        torch.save(
            dict(
                model=self.online_net.state_dict(),
                exploration_rate=self.exploration_rate,
                replay_memory=self.memory
            ),
            save_path
        )

        print(f"Airstriker model saved to {save_path} at step {self.curr_step}")


    def load(self, load_path, reset_exploration_rate, load_replay_buffer):
        if not load_path.exists():
            raise ValueError(f"{load_path} does not exist")

        ckp = torch.load(load_path, map_location=('cuda' if self.use_cuda else 'cpu'))
        exploration_rate = ckp.get('exploration_rate')
        state_dict = ckp.get('model')
        

        print(f"Loading model at {load_path} with exploration rate {exploration_rate}")
        self.online_net.load_state_dict(state_dict)
        self.target_net = copy.deepcopy(self.online_net)
        self.sync_Q_target()

        if load_replay_buffer:
            replay_memory = ckp.get('replay_memory')
            print(f"Loading replay memory. Len {len(replay_memory)}" if replay_memory else "Saved replay memory not found. Not restoring replay memory.")
            self.memory = replay_memory if replay_memory else self.memory

        if reset_exploration_rate:
            print(f"Reset exploration rate option specified. Not restoring saved exploration rate {exploration_rate}. The current exploration rate is {self.exploration_rate}")
        else:
            print(f"Setting exploration rate to {exploration_rate} not loaded.")
            self.exploration_rate = exploration_rate




class DuelingDDQNAgent(DuelingDQNAgent):
    @torch.no_grad()
    def td_target(self, rewards, next_states, dones):
        rewards = rewards.reshape(-1, 1)
        dones = dones.reshape(-1, 1)
        q_vals = self.online_net.forward(next_states)
        target_actions = torch.argmax(q_vals, axis=1)
        target_actions = target_actions.reshape(-1, 1)
        
        target_qs = self.target_net.forward(next_states)
        target_qs = target_qs.gather(1, target_actions)
        target_qs = target_qs.reshape(-1, 1)
        target_qs[dones] = 0.0
        return (rewards + (self.gamma * target_qs))