|
import datetime |
|
from pathlib import Path |
|
from agent import DQNAgent, DDQNAgent, MetricLogger |
|
from wrappers import make_lunar |
|
|
|
|
|
env = make_lunar() |
|
|
|
env.reset() |
|
|
|
save_dir = Path("checkpoints") / datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S") |
|
save_dir.mkdir(parents=True) |
|
|
|
|
|
checkpoint = Path('checkpoints/lunar-lander-dqn-rc/airstriker_net_1.chkpt') |
|
|
|
logger = MetricLogger(save_dir) |
|
|
|
print("Testing Double DQN Agent!") |
|
agent = DDQNAgent( |
|
state_dim=8, |
|
action_dim=env.action_space.n, |
|
save_dir=save_dir, |
|
batch_size=512, |
|
checkpoint=checkpoint, |
|
exploration_rate_decay=0.999995, |
|
exploration_rate_min=0.05, |
|
training_frequency=1, |
|
target_network_sync_frequency=200, |
|
max_memory_size=50000, |
|
learning_rate=0.0005, |
|
load_replay_buffer=False |
|
|
|
) |
|
agent.exploration_rate = agent.exploration_rate_min |
|
|
|
episodes = 100 |
|
|
|
for e in range(episodes): |
|
|
|
state = env.reset() |
|
|
|
while True: |
|
|
|
env.render() |
|
|
|
action = agent.act(state) |
|
|
|
next_state, reward, done, info = env.step(action) |
|
|
|
|
|
|
|
|
|
|
|
state = next_state |
|
|
|
if done: |
|
break |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|