yi-01-ai
commited on
Commit
·
36be0a7
1
Parent(s):
1204768
Auto Sync from git://github.com/01-ai/Yi.git/commit/81dbb7886c95ed0754a6b62805e8fa7bc7db60d8
Browse files
README.md
CHANGED
@@ -152,20 +152,20 @@ pipeline_tag: text-generation
|
|
152 |
## News
|
153 |
|
154 |
<details open>
|
155 |
-
<summary>🎯 <b>2024
|
156 |
<br>
|
157 |
-
|
158 |
</details>
|
159 |
|
160 |
<details open>
|
161 |
-
<summary>🎯 <b>2024
|
162 |
<br>
|
163 |
<code><a href="https://huggingface.co/01-ai/Yi-VL-34B">Yi-VL-34B</a></code> has ranked <strong>first</strong> among all existing open-source models in the latest benchmarks, including <a href="https://arxiv.org/abs/2311.16502">MMMU</a> and <a href="https://arxiv.org/abs/2401.11944">CMMMU</a> (based on data available up to January 2024).</li>
|
164 |
</details>
|
165 |
|
166 |
|
167 |
<details>
|
168 |
-
<summary>🎯 <b>2023
|
169 |
<br>This release contains two chat models based on previously released base models, two 8-bit models quantized by GPTQ, and two 4-bit models quantized by AWQ.
|
170 |
|
171 |
- `Yi-34B-Chat`
|
@@ -182,11 +182,11 @@ You can try some of them interactively at:
|
|
182 |
</details>
|
183 |
|
184 |
<details>
|
185 |
-
<summary>🔔 <b>2023
|
186 |
</details>
|
187 |
|
188 |
<details>
|
189 |
-
<summary>🔥 <b>2023
|
190 |
<br>Application form:
|
191 |
|
192 |
- [English](https://cn.mikecrm.com/l91ODJf)
|
@@ -194,13 +194,13 @@ You can try some of them interactively at:
|
|
194 |
</details>
|
195 |
|
196 |
<details>
|
197 |
-
<summary>🎯 <b>2023
|
198 |
<br>This release contains two base models with the same parameter sizes as the previous
|
199 |
release, except that the context window is extended to 200K.
|
200 |
</details>
|
201 |
|
202 |
<details>
|
203 |
-
<summary>🎯 <b>2023
|
204 |
<br>The first public release contains two bilingual (English/Chinese) base models
|
205 |
with the parameter sizes of 6B and 34B. Both of them are trained with 4K
|
206 |
sequence length and can be extended to 32K during inference time.
|
@@ -939,11 +939,11 @@ Before deploying Yi in your environment, make sure your hardware meets the follo
|
|
939 |
|
940 |
| Model | Minimum VRAM | Recommended GPU Example |
|
941 |
|----------------------|--------------|:-------------------------------------:|
|
942 |
-
| Yi-6B-Chat | 15 GB | RTX 3090 <br> RTX 4090 <br> A10 <br> A30 |
|
943 |
-
| Yi-6B-Chat-4bits | 4 GB | RTX 3060 <br> RTX 4060 |
|
944 |
-
| Yi-6B-Chat-8bits | 8 GB | RTX 3070 <br> RTX 4060 |
|
945 |
| Yi-34B-Chat | 72 GB | 4 x RTX 4090 <br> A800 (80GB) |
|
946 |
-
| Yi-34B-Chat-4bits | 20 GB | RTX 3090 <br> RTX 4090 <br> A10 <br> A30 <br> A100 (40GB) |
|
947 |
| Yi-34B-Chat-8bits | 38 GB | 2 x RTX 3090 <br> 2 x RTX 4090 <br> A800 (40GB) |
|
948 |
|
949 |
Below are detailed minimum VRAM requirements under different batch use cases.
|
@@ -961,7 +961,7 @@ Below are detailed minimum VRAM requirements under different batch use cases.
|
|
961 |
|
962 |
| Model | Minimum VRAM | Recommended GPU Example |
|
963 |
|----------------------|--------------|:-------------------------------------:|
|
964 |
-
| Yi-6B | 15 GB |
|
965 |
| Yi-6B-200K | 50 GB | A800 (80 GB) |
|
966 |
| Yi-9B | 20 GB | 1 x RTX 4090 (24 GB) |
|
967 |
| Yi-34B | 72 GB | 4 x RTX 4090 <br> A800 (80 GB) |
|
@@ -1024,6 +1024,8 @@ With all these resources at your fingertips, you're ready to start your exciting
|
|
1024 |
- [Benchmarks](#benchmarks)
|
1025 |
- [Chat model performance](#chat-model-performance)
|
1026 |
- [Base model performance](#base-model-performance)
|
|
|
|
|
1027 |
|
1028 |
## Ecosystem
|
1029 |
|
@@ -1032,8 +1034,8 @@ Yi has a comprehensive ecosystem, offering a range of tools, services, and model
|
|
1032 |
- [Upstream](#upstream)
|
1033 |
- [Downstream](#downstream)
|
1034 |
- [Serving](#serving)
|
1035 |
-
- [
|
1036 |
-
- [Fine-tuning](
|
1037 |
- [API](#api)
|
1038 |
|
1039 |
### Upstream
|
@@ -1158,7 +1160,7 @@ Yi-9B is almost the best among a range of similar-sized open-source models (incl
|
|
1158 |
|
1159 |
![Yi-9B benchmark - details](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_details.png?raw=true)
|
1160 |
|
1161 |
-
- In terms of **overall** ability (
|
1162 |
|
1163 |
![Yi-9B benchmark - overall](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_overall.png?raw=true)
|
1164 |
|
|
|
152 |
## News
|
153 |
|
154 |
<details open>
|
155 |
+
<summary>🎯 <b>2024-03-06</b>: The <code>Yi-9B</code> is open-sourced and available to the public.</summary>
|
156 |
<br>
|
157 |
+
<code>Yi-9B</code> stands out as the top performer among a range of similar-sized open-source models (including Mistral-7B, SOLAR-10.7B, Gemma-7B, DeepSeek-Coder-7B-Base-v1.5 and more), particularly excelling in code, math, common-sense reasoning, and reading comprehension.
|
158 |
</details>
|
159 |
|
160 |
<details open>
|
161 |
+
<summary>🎯 <b>2024-01-23</b>: The Yi-VL models, <code><a href="https://huggingface.co/01-ai/Yi-VL-34B">Yi-VL-34B</a></code> and <code><a href="https://huggingface.co/01-ai/Yi-VL-6B">Yi-VL-6B</a></code>, are open-sourced and available to the public.</summary>
|
162 |
<br>
|
163 |
<code><a href="https://huggingface.co/01-ai/Yi-VL-34B">Yi-VL-34B</a></code> has ranked <strong>first</strong> among all existing open-source models in the latest benchmarks, including <a href="https://arxiv.org/abs/2311.16502">MMMU</a> and <a href="https://arxiv.org/abs/2401.11944">CMMMU</a> (based on data available up to January 2024).</li>
|
164 |
</details>
|
165 |
|
166 |
|
167 |
<details>
|
168 |
+
<summary>🎯 <b>2023-11-23</b>: <a href="#chat-models">Chat models</a> are open-sourced and available to the public.</summary>
|
169 |
<br>This release contains two chat models based on previously released base models, two 8-bit models quantized by GPTQ, and two 4-bit models quantized by AWQ.
|
170 |
|
171 |
- `Yi-34B-Chat`
|
|
|
182 |
</details>
|
183 |
|
184 |
<details>
|
185 |
+
<summary>🔔 <b>2023-11-23</b>: The Yi Series Models Community License Agreement is updated to <a href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">v2.1</a>.</summary>
|
186 |
</details>
|
187 |
|
188 |
<details>
|
189 |
+
<summary>🔥 <b>2023-11-08</b>: Invited test of Yi-34B chat model.</summary>
|
190 |
<br>Application form:
|
191 |
|
192 |
- [English](https://cn.mikecrm.com/l91ODJf)
|
|
|
194 |
</details>
|
195 |
|
196 |
<details>
|
197 |
+
<summary>🎯 <b>2023-11-05</b>: <a href="#base-models">The base models, </a><code>Yi-6B-200K</code> and <code>Yi-34B-200K</code>, are open-sourced and available to the public.</summary>
|
198 |
<br>This release contains two base models with the same parameter sizes as the previous
|
199 |
release, except that the context window is extended to 200K.
|
200 |
</details>
|
201 |
|
202 |
<details>
|
203 |
+
<summary>🎯 <b>2023-11-02</b>: <a href="#base-models">The base models, </a><code>Yi-6B</code> and <code>Yi-34B</code>, are open-sourced and available to the public.</summary>
|
204 |
<br>The first public release contains two bilingual (English/Chinese) base models
|
205 |
with the parameter sizes of 6B and 34B. Both of them are trained with 4K
|
206 |
sequence length and can be extended to 32K during inference time.
|
|
|
939 |
|
940 |
| Model | Minimum VRAM | Recommended GPU Example |
|
941 |
|----------------------|--------------|:-------------------------------------:|
|
942 |
+
| Yi-6B-Chat | 15 GB | 1 x RTX 3090 <br> 1 x RTX 4090 <br> A10 <br> A30 |
|
943 |
+
| Yi-6B-Chat-4bits | 4 GB | 1 x RTX 3060 <br> 1 x RTX 4060 |
|
944 |
+
| Yi-6B-Chat-8bits | 8 GB | 1 x RTX 3070 <br> 1 x RTX 4060 |
|
945 |
| Yi-34B-Chat | 72 GB | 4 x RTX 4090 <br> A800 (80GB) |
|
946 |
+
| Yi-34B-Chat-4bits | 20 GB | 1 x RTX 3090 <br> 1 x RTX 4090 <br> A10 <br> A30 <br> A100 (40GB) |
|
947 |
| Yi-34B-Chat-8bits | 38 GB | 2 x RTX 3090 <br> 2 x RTX 4090 <br> A800 (40GB) |
|
948 |
|
949 |
Below are detailed minimum VRAM requirements under different batch use cases.
|
|
|
961 |
|
962 |
| Model | Minimum VRAM | Recommended GPU Example |
|
963 |
|----------------------|--------------|:-------------------------------------:|
|
964 |
+
| Yi-6B | 15 GB | 1 x RTX 3090 <br> 1 x RTX 4090 <br> A10 <br> A30 |
|
965 |
| Yi-6B-200K | 50 GB | A800 (80 GB) |
|
966 |
| Yi-9B | 20 GB | 1 x RTX 4090 (24 GB) |
|
967 |
| Yi-34B | 72 GB | 4 x RTX 4090 <br> A800 (80 GB) |
|
|
|
1024 |
- [Benchmarks](#benchmarks)
|
1025 |
- [Chat model performance](#chat-model-performance)
|
1026 |
- [Base model performance](#base-model-performance)
|
1027 |
+
- [Yi-34B and Yi-34B-200K](#yi-34b-and-yi-34b-200k)
|
1028 |
+
- [Yi-9B](#yi-9b)
|
1029 |
|
1030 |
## Ecosystem
|
1031 |
|
|
|
1034 |
- [Upstream](#upstream)
|
1035 |
- [Downstream](#downstream)
|
1036 |
- [Serving](#serving)
|
1037 |
+
- [Quantization](#quantization-1)
|
1038 |
+
- [Fine-tuning](#fine-tuning-1)
|
1039 |
- [API](#api)
|
1040 |
|
1041 |
### Upstream
|
|
|
1160 |
|
1161 |
![Yi-9B benchmark - details](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_details.png?raw=true)
|
1162 |
|
1163 |
+
- In terms of **overall** ability (Mean-All), Yi-9B performs the best among similarly sized open-source models, surpassing DeepSeek-Coder, DeepSeek-Math, Mistral-7B, SOLAR-10.7B, and Gemma-7B.
|
1164 |
|
1165 |
![Yi-9B benchmark - overall](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_overall.png?raw=true)
|
1166 |
|