yi-01-ai commited on
Commit
0b5fb42
1 Parent(s): 95a0c76

Auto Sync from git://github.com/01-ai/Yi.git/commit/6da0100d379e4446978ab09f10fd58c6cbdc452d

Browse files
Files changed (1) hide show
  1. README.md +57 -57
README.md CHANGED
@@ -71,14 +71,14 @@ pipeline_tag: text-generation
71
  <details open>
72
  <summary></b>📕 Table of Contents</b></summary>
73
 
74
- - [What is Yi?](#-what-is-yi)
75
- - [Introduction](#-introduction)
76
- - [Models](#-models)
77
  - [Chat models](#chat-models)
78
  - [Base models](#base-models)
79
  - [Other info](#other-info)
80
- - [News](#-news)
81
- - [How to use Yi?](#-how-to-use-yi)
82
  - [Quick start](#quick-start)
83
  - [Choose your path](#choose-your-path)
84
  - [pip](#quick-start---pip)
@@ -90,30 +90,30 @@ pipeline_tag: text-generation
90
  - [Quantization](#quantization)
91
  - [Deployment](#deployment)
92
  - [Learning hub](#learning-hub)
93
- - [Why Yi?](#-why-yi)
94
- - [Ecosystem](#-ecosystem)
95
- - [Upstream](#-upstream)
96
- - [Downstream](#-downstream)
97
- - [Serving](#-serving)
98
- - [Quantitation](#️-quantitation)
99
- - [Fine-tuning](#️-fine-tuning)
100
  - [API](#api)
101
- - [Benchmarks](#-benchmarks)
102
- - [Base model performance](#-base-model-performance)
103
- - [Chat model performance](#-chat-model-performance)
104
- - [Who can use Yi?](#-who-can-use-yi)
105
- - [Misc.](#-misc)
106
  - [Acknowledgements](#acknowledgments)
107
- - [Disclaimer](#-disclaimer)
108
- - [License](#-license)
109
 
110
  </details>
111
 
112
  <hr>
113
 
114
- # 🟢 What is Yi?
115
 
116
- ## 📌 Introduction
117
 
118
  - 🤖 The Yi series models are the next generation of open-source large language models trained from scratch by [01.AI](https://01.ai/).
119
 
@@ -149,7 +149,7 @@ pipeline_tag: text-generation
149
  <a href="#top">Back to top ⬆️ </a> ]
150
  </p>
151
 
152
- ## 🎉 News
153
 
154
  <details open>
155
  <summary>🎯 <b>2024/03/06</b>: The Yi-9B is open-sourced and available to the public.</summary>
@@ -211,7 +211,7 @@ sequence length and can be extended to 32K during inference time.
211
  <a href="#top">Back to top ⬆️ </a> ]
212
  </p>
213
 
214
- ## 🎯 Models
215
 
216
  Yi models come in multiple sizes and cater to different use cases. You can also fine-tune Yi models to meet your specific requirements.
217
 
@@ -272,7 +272,7 @@ Model | Intro | Default context window | Pretrained tokens | Training Data Date
272
  </p>
273
 
274
 
275
- # 🟢 How to use Yi?
276
 
277
  - [Quick start](#quick-start)
278
  - [Choose your path](#choose-your-path)
@@ -281,7 +281,7 @@ Model | Intro | Default context window | Pretrained tokens | Training Data Date
281
  - [conda-lock](#quick-start---conda-lock)
282
  - [llama.cpp](#quick-start---llamacpp)
283
  - [Web demo](#web-demo)
284
- - [Fine-tuning](#finetuning)
285
  - [Quantization](#quantization)
286
  - [Deployment](#deployment)
287
  - [Learning hub](#learning-hub)
@@ -301,7 +301,7 @@ Select one of the following paths to begin your journey with Yi!
301
  If you prefer to deploy Yi models locally,
302
 
303
  - 🙋‍♀️ and you have **sufficient** resources (for example, NVIDIA A800 80GB), you can choose one of the following methods:
304
- - [pip](#pip)
305
  - [Docker](#quick-start---docker)
306
  - [conda-lock](#quick-start---conda-lock)
307
 
@@ -1012,31 +1012,31 @@ With all these resources at your fingertips, you're ready to start your exciting
1012
  </details>
1013
 
1014
 
1015
- # 🟢 Why Yi?
1016
 
1017
- - [🌎 Ecosystem](#-ecosystem)
1018
- - [💦 Upstream](#-upstream)
1019
- - [🌊 Downstream](#-downstream)
1020
- - [🔗 Serving](#-serving)
1021
- - [⚙️ Quantitation](#️-quantitation)
1022
- - [🛠️ Fine-tuning](#️-fine-tuning)
1023
  - [API](#api)
1024
- - [📌 Benchmarks](#-benchmarks)
1025
- - [📊 Chat model performance](#-chat-model-performance)
1026
- - [📊 Base model performance](#-base-model-performance)
1027
 
1028
- ## 🌎 Ecosystem
1029
 
1030
  Yi has a comprehensive ecosystem, offering a range of tools, services, and models to enrich your experiences and maximize productivity.
1031
 
1032
- - [💦 Upstream](#-upstream)
1033
- - [🌊 Downstream](#-downstream)
1034
- - [🔗 Serving](#-serving)
1035
- - [⚙️ Quantitation](#️-quantitation)
1036
- - [🛠️ Fine-tuning](#️-fine-tuning)
1037
  - [API](#api)
1038
 
1039
- ### 💦 Upstream
1040
 
1041
  The Yi series models follow the same model architecture as Llama. By choosing Yi, you can leverage existing tools, libraries, and resources within the Llama ecosystem, eliminating the need to create new tools and enhancing development efficiency.
1042
 
@@ -1054,7 +1054,7 @@ model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-34b", device_map="auto")
1054
  <a href="#top">Back to top ⬆️ </a> ]
1055
  </p>
1056
 
1057
- ### 🌊 Downstream
1058
 
1059
  > 💡 Tip
1060
  >
@@ -1062,7 +1062,7 @@ model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-34b", device_map="auto")
1062
  >
1063
  > - To help others quickly understand your work, it is recommended to use the format of `<model-name>: <model-intro> + <model-highlights>`.
1064
 
1065
- #### 🔗 Serving
1066
 
1067
  If you want to get up with Yi in a few minutes, you can use the following services built upon Yi.
1068
 
@@ -1074,7 +1074,7 @@ If you want to get up with Yi in a few minutes, you can use the following servic
1074
 
1075
  - [ScaleLLM](https://github.com/vectorch-ai/ScaleLLM#supported-models): you can use this service to run Yi models locally with added flexibility and customization.
1076
 
1077
- #### ⚙️ Quantitation
1078
 
1079
  If you have limited computational capabilities, you can use Yi's quantized models as follows.
1080
 
@@ -1084,7 +1084,7 @@ These quantized models have reduced precision but offer increased efficiency, su
1084
  - [TheBloke/Yi-34B-GGUF](https://huggingface.co/TheBloke/Yi-34B-GGUF)
1085
  - [TheBloke/Yi-34B-AWQ](https://huggingface.co/TheBloke/Yi-34B-AWQ)
1086
 
1087
- #### 🛠️ Fine-tuning
1088
 
1089
  If you're seeking to explore the diverse capabilities within Yi's thriving family, you can delve into Yi's fine-tuned models as below.
1090
 
@@ -1110,12 +1110,12 @@ If you're seeking to explore the diverse capabilities within Yi's thriving famil
1110
  <a href="#top">Back to top ⬆️ </a> ]
1111
  </p>
1112
 
1113
- ## 📌 Benchmarks
1114
 
1115
- - [📊 Chat model performance](#-chat-model-performance)
1116
- - [📊 Base model performance](#-base-model-performance)
1117
 
1118
- ### 📊 Chat model performance
1119
 
1120
  Yi-34B-Chat model demonstrates exceptional performance, ranking first among all existing open-source models in the benchmarks including MMLU, CMMLU, BBH, GSM8k, and more.
1121
 
@@ -1132,7 +1132,7 @@ Yi-34B-Chat model demonstrates exceptional performance, ranking first among all
1132
  <strong>*</strong>: C-Eval results are evaluated on the validation datasets
1133
  </details>
1134
 
1135
- ### 📊 Base model performance
1136
 
1137
  #### Yi-34B and Yi-34B-200K
1138
 
@@ -1158,7 +1158,7 @@ Yi-9B is almost the best among a range of similar-sized open-source models (incl
1158
 
1159
  ![Yi-9B benchmark - details](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_details.png?raw=true)
1160
 
1161
- - In terms of **overall** ability (Mean-All), Yi-9B performs the best among similarly sized open-source models, surpassing DeepSeek-Coder, DeepSeek-Math, Mistral-7B, SOLAR-10.7B, and Gemma-7B.
1162
 
1163
  ![Yi-9B benchmark - overall](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_overall.png?raw=true)
1164
 
@@ -1178,7 +1178,7 @@ Yi-9B is almost the best among a range of similar-sized open-source models (incl
1178
  <a href="#top">Back to top ⬆️ </a> ]
1179
  </p>
1180
 
1181
- # 🟢 Who can use Yi?
1182
 
1183
  Everyone! 🙌 ✅
1184
 
@@ -1190,7 +1190,7 @@ Everyone! 🙌 ✅
1190
  <a href="#top">Back to top ⬆️ </a> ]
1191
  </p>
1192
 
1193
- # 🟢 Misc.
1194
 
1195
  ### Acknowledgments
1196
 
@@ -1202,7 +1202,7 @@ A heartfelt thank you to each of you who have made contributions to the Yi commu
1202
  <a href="#top">Back to top ⬆️ </a> ]
1203
  </p>
1204
 
1205
- ### 📡 Disclaimer
1206
 
1207
  We use data compliance checking algorithms during the training process, to
1208
  ensure the compliance of the trained model to the best of our ability. Due to
@@ -1217,7 +1217,7 @@ as well as any associated data security concerns.
1217
  <a href="#top">Back to top ⬆️ </a> ]
1218
  </p>
1219
 
1220
- ### 🪪 License
1221
 
1222
  The source code in this repo is licensed under the [Apache 2.0
1223
  license](https://github.com/01-ai/Yi/blob/main/LICENSE). The Yi series models are fully open for academic research and free for commercial use, with automatic permission granted upon application. All usage must adhere to the [Yi Series Models Community License Agreement 2.1](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt).
 
71
  <details open>
72
  <summary></b>📕 Table of Contents</b></summary>
73
 
74
+ - [What is Yi?](#what-is-yi)
75
+ - [Introduction](#introduction)
76
+ - [Models](#models)
77
  - [Chat models](#chat-models)
78
  - [Base models](#base-models)
79
  - [Other info](#other-info)
80
+ - [News](#news)
81
+ - [How to use Yi?](#how-to-use-yi)
82
  - [Quick start](#quick-start)
83
  - [Choose your path](#choose-your-path)
84
  - [pip](#quick-start---pip)
 
90
  - [Quantization](#quantization)
91
  - [Deployment](#deployment)
92
  - [Learning hub](#learning-hub)
93
+ - [Why Yi?](#why-yi)
94
+ - [Ecosystem](#ecosystem)
95
+ - [Upstream](#upstream)
96
+ - [Downstream](#downstream)
97
+ - [Serving](#serving)
98
+ - [Quantization](#quantization-1)
99
+ - [Fine-tuning](#fine-tuning-1)
100
  - [API](#api)
101
+ - [Benchmarks](#benchmarks)
102
+ - [Base model performance](#base-model-performance)
103
+ - [Chat model performance](#chat-model-performance)
104
+ - [Who can use Yi?](#who-can-use-yi)
105
+ - [Misc.](#misc)
106
  - [Acknowledgements](#acknowledgments)
107
+ - [Disclaimer](#disclaimer)
108
+ - [License](#license)
109
 
110
  </details>
111
 
112
  <hr>
113
 
114
+ # What is Yi?
115
 
116
+ ## Introduction
117
 
118
  - 🤖 The Yi series models are the next generation of open-source large language models trained from scratch by [01.AI](https://01.ai/).
119
 
 
149
  <a href="#top">Back to top ⬆️ </a> ]
150
  </p>
151
 
152
+ ## News
153
 
154
  <details open>
155
  <summary>🎯 <b>2024/03/06</b>: The Yi-9B is open-sourced and available to the public.</summary>
 
211
  <a href="#top">Back to top ⬆️ </a> ]
212
  </p>
213
 
214
+ ## Models
215
 
216
  Yi models come in multiple sizes and cater to different use cases. You can also fine-tune Yi models to meet your specific requirements.
217
 
 
272
  </p>
273
 
274
 
275
+ # How to use Yi?
276
 
277
  - [Quick start](#quick-start)
278
  - [Choose your path](#choose-your-path)
 
281
  - [conda-lock](#quick-start---conda-lock)
282
  - [llama.cpp](#quick-start---llamacpp)
283
  - [Web demo](#web-demo)
284
+ - [Fine-tuning](#fine-tuning)
285
  - [Quantization](#quantization)
286
  - [Deployment](#deployment)
287
  - [Learning hub](#learning-hub)
 
301
  If you prefer to deploy Yi models locally,
302
 
303
  - 🙋‍♀️ and you have **sufficient** resources (for example, NVIDIA A800 80GB), you can choose one of the following methods:
304
+ - [pip](#quick-start---pip)
305
  - [Docker](#quick-start---docker)
306
  - [conda-lock](#quick-start---conda-lock)
307
 
 
1012
  </details>
1013
 
1014
 
1015
+ # Why Yi?
1016
 
1017
+ - [Ecosystem](#ecosystem)
1018
+ - [Upstream](#upstream)
1019
+ - [Downstream](#downstream)
1020
+ - [Serving](#serving)
1021
+ - [Quantization](#quantization-1)
1022
+ - [Fine-tuning](#fine-tuning-1)
1023
  - [API](#api)
1024
+ - [Benchmarks](#benchmarks)
1025
+ - [Chat model performance](#chat-model-performance)
1026
+ - [Base model performance](#base-model-performance)
1027
 
1028
+ ## Ecosystem
1029
 
1030
  Yi has a comprehensive ecosystem, offering a range of tools, services, and models to enrich your experiences and maximize productivity.
1031
 
1032
+ - [Upstream](#upstream)
1033
+ - [Downstream](#downstream)
1034
+ - [Serving](#serving)
1035
+ - [Quantitation](#️quantitation)
1036
+ - [Fine-tuning](#️fine-tuning)
1037
  - [API](#api)
1038
 
1039
+ ### Upstream
1040
 
1041
  The Yi series models follow the same model architecture as Llama. By choosing Yi, you can leverage existing tools, libraries, and resources within the Llama ecosystem, eliminating the need to create new tools and enhancing development efficiency.
1042
 
 
1054
  <a href="#top">Back to top ⬆️ </a> ]
1055
  </p>
1056
 
1057
+ ### Downstream
1058
 
1059
  > 💡 Tip
1060
  >
 
1062
  >
1063
  > - To help others quickly understand your work, it is recommended to use the format of `<model-name>: <model-intro> + <model-highlights>`.
1064
 
1065
+ #### Serving
1066
 
1067
  If you want to get up with Yi in a few minutes, you can use the following services built upon Yi.
1068
 
 
1074
 
1075
  - [ScaleLLM](https://github.com/vectorch-ai/ScaleLLM#supported-models): you can use this service to run Yi models locally with added flexibility and customization.
1076
 
1077
+ #### Quantization
1078
 
1079
  If you have limited computational capabilities, you can use Yi's quantized models as follows.
1080
 
 
1084
  - [TheBloke/Yi-34B-GGUF](https://huggingface.co/TheBloke/Yi-34B-GGUF)
1085
  - [TheBloke/Yi-34B-AWQ](https://huggingface.co/TheBloke/Yi-34B-AWQ)
1086
 
1087
+ #### Fine-tuning
1088
 
1089
  If you're seeking to explore the diverse capabilities within Yi's thriving family, you can delve into Yi's fine-tuned models as below.
1090
 
 
1110
  <a href="#top">Back to top ⬆️ </a> ]
1111
  </p>
1112
 
1113
+ ## Benchmarks
1114
 
1115
+ - [Chat model performance](#-chat-model-performance)
1116
+ - [Base model performance](#-base-model-performance)
1117
 
1118
+ ### Chat model performance
1119
 
1120
  Yi-34B-Chat model demonstrates exceptional performance, ranking first among all existing open-source models in the benchmarks including MMLU, CMMLU, BBH, GSM8k, and more.
1121
 
 
1132
  <strong>*</strong>: C-Eval results are evaluated on the validation datasets
1133
  </details>
1134
 
1135
+ ### Base model performance
1136
 
1137
  #### Yi-34B and Yi-34B-200K
1138
 
 
1158
 
1159
  ![Yi-9B benchmark - details](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_details.png?raw=true)
1160
 
1161
+ - In terms of **overall** ability (`Mean-All), Yi-9B performs the best among similarly sized open-source models, surpassing DeepSeek-Coder, DeepSeek-Math, Mistral-7B, SOLAR-10.7B, and Gemma-7B.
1162
 
1163
  ![Yi-9B benchmark - overall](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_overall.png?raw=true)
1164
 
 
1178
  <a href="#top">Back to top ⬆️ </a> ]
1179
  </p>
1180
 
1181
+ # Who can use Yi?
1182
 
1183
  Everyone! 🙌 ✅
1184
 
 
1190
  <a href="#top">Back to top ⬆️ </a> ]
1191
  </p>
1192
 
1193
+ # Misc.
1194
 
1195
  ### Acknowledgments
1196
 
 
1202
  <a href="#top">Back to top ⬆️ </a> ]
1203
  </p>
1204
 
1205
+ ### Disclaimer
1206
 
1207
  We use data compliance checking algorithms during the training process, to
1208
  ensure the compliance of the trained model to the best of our ability. Due to
 
1217
  <a href="#top">Back to top ⬆️ </a> ]
1218
  </p>
1219
 
1220
+ ### License
1221
 
1222
  The source code in this repo is licensed under the [Apache 2.0
1223
  license](https://github.com/01-ai/Yi/blob/main/LICENSE). The Yi series models are fully open for academic research and free for commercial use, with automatic permission granted upon application. All usage must adhere to the [Yi Series Models Community License Agreement 2.1](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt).