0bi0n3 commited on
Commit
97a6ac1
·
1 Parent(s): d288461

End of training

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.84
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.6253
36
+ - Accuracy: 0.84
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 2
57
+ - eval_batch_size: 2
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 8
60
+ - total_train_batch_size: 16
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 10
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 2.1493 | 1.0 | 56 | 2.0306 | 0.53 |
71
+ | 1.5907 | 1.99 | 112 | 1.4564 | 0.69 |
72
+ | 1.3192 | 2.99 | 168 | 1.1955 | 0.7 |
73
+ | 1.1758 | 4.0 | 225 | 1.0190 | 0.75 |
74
+ | 0.9033 | 5.0 | 281 | 0.8936 | 0.82 |
75
+ | 0.7127 | 5.99 | 337 | 0.7668 | 0.78 |
76
+ | 0.5503 | 6.99 | 393 | 0.7165 | 0.78 |
77
+ | 0.4843 | 8.0 | 450 | 0.6483 | 0.83 |
78
+ | 0.3883 | 9.0 | 506 | 0.6441 | 0.82 |
79
+ | 0.3674 | 9.96 | 560 | 0.6253 | 0.84 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.34.0.dev0
85
+ - Pytorch 2.0.1+cu118
86
+ - Datasets 2.14.5
87
+ - Tokenizers 0.13.3