---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.84
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6253
- Accuracy: 0.84

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1493        | 1.0   | 56   | 2.0306          | 0.53     |
| 1.5907        | 1.99  | 112  | 1.4564          | 0.69     |
| 1.3192        | 2.99  | 168  | 1.1955          | 0.7      |
| 1.1758        | 4.0   | 225  | 1.0190          | 0.75     |
| 0.9033        | 5.0   | 281  | 0.8936          | 0.82     |
| 0.7127        | 5.99  | 337  | 0.7668          | 0.78     |
| 0.5503        | 6.99  | 393  | 0.7165          | 0.78     |
| 0.4843        | 8.0   | 450  | 0.6483          | 0.83     |
| 0.3883        | 9.0   | 506  | 0.6441          | 0.82     |
| 0.3674        | 9.96  | 560  | 0.6253          | 0.84     |


### Framework versions

- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3