--- base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated library_name: transformers license: llama3.1 tags: - abliterated - uncensored - mlx model-index: - name: Meta-Llama-3.1-8B-Instruct-abliterated results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 73.29 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 27.13 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 6.42 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 0.89 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 3.21 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 27.81 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated name: Open LLM Leaderboard --- # 0xBreath/Meta-Llama-3.1-8B-Instruct-abliterated-q8-mlx The Model [0xBreath/Meta-Llama-3.1-8B-Instruct-abliterated-q8-mlx](https://huggingface.co/0xBreath/Meta-Llama-3.1-8B-Instruct-abliterated-q8-mlx) was converted to MLX format from [mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated](https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated) using mlx-lm version **0.19.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("0xBreath/Meta-Llama-3.1-8B-Instruct-abliterated-q8-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```