File size: 5,835 Bytes
3ae1cd5 cde64ac 3ae1cd5 cde64ac 3ae1cd5 cde64ac 3ae1cd5 cde64ac 3ae1cd5 cde64ac 3ae1cd5 cde64ac 3ae1cd5 cde64ac 3ae1cd5 cde64ac 3ae1cd5 cde64ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import re
import torch
import numpy as np
from transformers import MimiModel, GenerationConfig
from transformers import Pipeline, LogitsProcessor
class AlternatingCodebooksLogitsProcessor(LogitsProcessor):
def __init__(self, input_start_len: int, codebook_size: int, num_codebooks: int, offset: int, stop_token: int):
self.input_start_len = input_start_len
self.codebook_size = codebook_size
self.num_codebooks = num_codebooks
self.offset = offset
self.stop_token = stop_token
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
curr_len = input_ids.shape[-1]
codebook_idx = ((curr_len - self.input_start_len) % self.num_codebooks)
scores_processed = scores.clone()
scores_processed[:, : self.offset + codebook_idx * self.codebook_size] = -float("inf")
scores_processed[:, self.offset + (codebook_idx+1) * self.codebook_size :] = -float("inf")
scores_processed[:, self.stop_token] = scores[:, self.stop_token]
return scores_processed
class IndriTTSPipeline(Pipeline):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.audio_tokenizer = MimiModel.from_pretrained('kyutai/mimi').to(device=self.device)
# TODO: Ideally all of this should come from model config
self.convert_token = self.tokenizer.encode('[convert]')
self.stop_token = self.tokenizer.encode('[stop]')
self.text_modality_token = self.tokenizer.encode('[text]')
self.acoustic_modality_token = self.tokenizer.encode('[mimi]')
self.num_codebooks = 8
self.audio_offset = 50257
self.model.stop_token = self.stop_token
self.model.generation_config = GenerationConfig(
eos_token_id=self.stop_token,
max_length=kwargs.get('max_length', 1024),
temperature=kwargs.get('temperature', 0.5),
top_k=kwargs.get('top_k', 15),
do_sample=kwargs.get('do_sample', True)
)
def _sanitize_parameters(self, **kwargs):
speaker = kwargs.get('speaker', '[spkr_unk]')
preprocess_kwargs = {
'speaker': speaker
}
return preprocess_kwargs, {}, {}
def _prepare_tts_tokens(self, text_tokens, speaker):
input_tokens = np.hstack([
self.text_modality_token,
text_tokens,
self.convert_token,
self.acoustic_modality_token,
self.tokenizer.encode(speaker)
])
return input_tokens.tolist()
def _sanitize_text(self, text):
text = text.lower()
text = re.sub(r'\n+', ' ', text)
text = re.sub(r'[ \t]+', ' ', text)
text = re.sub(r'([,\.?])+', r'\1', text)
return text.strip()
def _deserialize_tokens(self, tokens, num_codebooks):
cb = [tokens[i::num_codebooks] for i in range(num_codebooks)]
min_shape = min([c.shape for c in cb])[0]
acoustic_tokens = torch.vstack([c[:min_shape] - 2048*i for i, c in enumerate(cb)])
return acoustic_tokens
# TODO: Use this to support batching
def _prepare_mimi_batch(self, tokens, attention_mask):
max_len = max(token.size(1) for token in tokens)
padded_tokens = []
padded_masks = []
for token, mask in zip(tokens, attention_masks):
pad_len = max_len - token.size(1)
padded_token = F.pad(token, (0, pad_len, 0, 0), value=0)
padded_mask = F.pad(mask, (0, pad_len, 0, 0), value=0)
padded_tokens.append(padded_token)
padded_masks.append(padded_mask)
stacked_tokens = torch.stack(padded_tokens, dim=0)
stacked_masks = torch.stack(padded_masks, dim=0)
return stacked_tokens, stacked_masks
def preprocess(self, inputs, speaker):
input_text = self._sanitize_text(inputs)
input_tokens = self.tokenizer.encode(input_text)
task_tokens = self._prepare_tts_tokens(input_tokens, speaker)
task_tokens = torch.tensor(task_tokens).unsqueeze(0)
return {'input_ids': task_tokens, 'attention_mask': torch.ones_like(task_tokens)}
def _forward(self, model_inputs, **forward_args):
logits_processor=[
AlternatingCodebooksLogitsProcessor(
input_start_len=model_inputs['input_ids'].shape[-1],
codebook_size=2048,
num_codebooks=self.num_codebooks,
offset=self.audio_offset,
stop_token=self.stop_token
)
]
outputs = self.model.generate(
model_inputs['input_ids'],
logits_processor=logits_processor
)
audio_tokens, attention_mask = [], []
for idx, inputs in enumerate(model_inputs['input_ids']):
truncated = outputs[idx, inputs.shape[-1]:]
end = torch.where(truncated == self.stop_token[0])[-1]
if end.shape[-1] > 0:
end = end[0]
else:
end = truncated.shape[-1]
truncated = truncated[:end]
truncated -= self.audio_offset
truncated = self._deserialize_tokens(torch.tensor(truncated), self.num_codebooks)
audio_tokens.append(truncated)
attention_mask.append(torch.ones_like(truncated))
audio_tokens = torch.vstack(audio_tokens).unsqueeze(0)
attention_mask = torch.vstack(attention_mask).unsqueeze(0)
audio = self.audio_tokenizer.decode(audio_tokens).audio_values
return {
'audio_tokens': audio_tokens, # (B, num_codebooks, num_samples)
'audio': audio # (B, 1, num_audio_samples)
}
def postprocess(self, model_outputs):
return model_outputs
|