File size: 5,314 Bytes
25c720f
 
 
 
 
 
 
5cd2172
 
 
 
 
 
 
25c720f
86cc724
35e69ec
bb0d793
723f8bd
8f4b023
deff005
 
 
 
bb0d793
 
deff005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
723f8bd
 
 
 
deff005
 
 
 
 
723f8bd
deff005
 
 
 
723f8bd
 
deff005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6fdda8
deff005
 
 
 
 
 
 
 
 
 
 
 
723f8bd
 
deff005
723f8bd
 
deff005
 
723f8bd
 
deff005
723f8bd
deff005
723f8bd
 
 
 
deff005
 
 
 
 
723f8bd
deff005
723f8bd
 
 
deff005
 
 
 
 
723f8bd
 
 
deff005
 
723f8bd
86cc724
 
723f8bd
 
 
86cc724
723f8bd
72c152d
cb38b9f
deff005
cb38b9f
5cd2172
 
 
723f8bd
 
deff005
 
723f8bd
a87fc9b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: apache-2.0
language:
- en
base_model:
- meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-generation
tags:
- 4-bit
- NeuroBit
- EducationalLLM
- LoRA
- PEFT
- Quantization
---
# NeuroBit-1.0-Exp 

## Overview

The **Neurobit-1.0-Exp** is a state-of-the-art fine-tuned model derived from **Meta-Llama-3.1-8B-bnb-4bit**, purpose-built to deliver high-quality educational content. Designed to meet the needs of students and educators, this model leverages advanced techniques, including **LoRA**, **PEFT**, and **RSLoRA**, to generate accurate, contextually relevant, and engaging outputs. We're naming it **NeuroBit-1.0-Exp** to signify its status as an experimental prototype, pushing the boundaries of innovation.

This model supports a wide range of educational applications, from summarization to personalized study guide generation, and has been optimized for efficiency with 4-bit quantization.

---

## Key Features
- **Base Model**: Meta-Llama-3.1-8B, optimized with LoRA, PEFT, and RSLoRA techniques.
- **Parameter Efficiency**: Quantized to 4-bit for improved performance.
- **Target Audience**: Students, educators, and developers of educational technology.
- **Applications**: Summarization, curriculum-aligned Q&A, practice question generation, and more.

---

## Use Cases

### Direct Applications
- **Concept Summarization**: Generate concise and accurate summaries of academic material.
- **Curriculum-Aligned Q&A**: Deliver precise answers to subject-specific questions.
- **Practice Material Creation**: Develop quizzes, questions, and explanations.
- **Study Resource Recommendations**: Suggest tailored learning resources.

### Downstream Applications
- **Interactive Learning Platforms**: Enhance user engagement with dynamic educational content.
- **Educational Chatbots**: Provide on-demand academic assistance.
- **Personalized Study Guides**: Create customized study materials for individual learners.
- **Automated Assessment Tools**: Generate and evaluate educational content programmatically.

### Out-of-Scope Applications
- **Legal or Financial Decision-Making**: This model is not suited for applications outside educational contexts.
- **Non-Educational Content Generation**: Avoid using the model for tasks unrelated to education.
- **High-Precision Non-Educational Use Cases**: The model may not deliver the required precision outside its intended domain.

---

## Training Details

### Dataset
- **Source**: Proprietary educational dataset curated by 169Pi.
- **Preprocessing Steps**:
  - Deduplication of redundant data.
  - Removal of noisy and irrelevant information.
  - Text normalization for enhanced consistency.

### Model Configuration
- **Parameter Size**: 4.65 billion parameters (quantized to 4-bit).
- **Hardware Utilized**: NVIDIA A100 GPUs.
- **Training Duration**: 26 hours.

### Hyperparameters
- **Learning Rate**: `5e-5`
- **Scheduler**: Cosine
- **Batch Size**: 32 per device
- **Gradient Accumulation Steps**: 4
- **Epochs**: 3
- **Mixed Precision**: FP16 and BF16
- **Optimizer**: AdamW (8-bit)
- **Weight Decay**: 0.05
- **Warmup Steps**: 1000
- **Logging Frequency**: Every 1000 steps
- **Evaluation Strategy**: Per 1000 steps
- **Model Checkpoints**: Saved every 1000 steps

---

## Technical Specifications

- **Base Model**: Meta-Llama-3.1-8B
- **Quantization**: 4-bit quantization for computational efficiency.
- **Fine-Tuning Techniques**:
  - **LoRA**: Low-Rank Adaptation for Parameter-Efficient Fine-Tuning(PEFT).
  - **PEFT**: Parameter-Efficient Fine-Tuning.
  - **RSLoRA**: Residual Scaling with LoRA for enhanced generalization.

### Model Objective
To generate high-quality educational content tailored for diverse academic needs, including:
- Topic Summarization
- Question-Answer Generation
- Personalized Study Material Creation

---

## Biases, Risks, and Limitations

### Known Biases
- The model may reflect cultural or linguistic biases inherent in the training dataset.

### Risks
- Outputs may lack precision for ambiguous or highly specialized queries.
- Inaccurate responses may occur for tasks outside the educational domain.

### Recommendations
- Use this model cautiously in critical applications, ensuring thorough evaluation of outputs for accuracy and bias.

---

## Evaluation

### Metrics
- **Primary Metric**: Training loss.
- **Secondary Metrics**: Accuracy and relevance through manual evaluation.

### Performance Results
- Achieved low validation loss, indicating strong generalization capabilities for educational tasks.

---

## Environmental Impact

- **Hardware Utilized**: NVIDIA A100 GPUs.
- **Training Time**: 26 hours.
- **Optimizations**: Quantization and efficient fine-tuning methods to reduce resource usage.

---

## Citation

If you use this model in your work, please cite it as follows:

```bibtex
@misc{169Pi_neuroBit-1.0-exp,
  title={169Pi/neuroBit-1.0-exp: Fine-Tuned Educational Model},
  author={169Pi},
  year={2024},
  publisher={Hugging Face},
  url={https://huggingface.co/169Pi/neurobit_1.0}
}
```

---

## Blog
https://169pi.ai/research/efficient-4-bit-ai-models%3A-quantization-and-lora-for-scalable-educational-deployment

## Contact

For inquiries or technical support, please contact:

- **Developer**: 169Pi AI  
- **Email**: [[email protected]](mailto:[email protected])