File size: 2,797 Bytes
0cea47d
 
 
 
 
 
 
 
4604509
c3221a5
 
 
 
 
 
 
 
 
 
 
 
 
0cea47d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
base_model: distilbert-base-multilingual-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert-base-multilingual-cased-finetuned-email-spam
  results: []
widget:
  - text: "From: \"Derila\" <[email protected]>\nX-MailFrom: \nTo: <[email protected]>\nReply-To: \"Derila\" <[email protected]>\nSubject: L'oreiller Derila #1 en France\""
    example_title: spam_1
  - text: "From: Disney <[email protected]>\nX-MailFrom: [email protected]\nTo: <[email protected]>\nReply-To: \nSubject: Your 90 Day Disney PIus Membership Must Be Activated By  Tomorrow"
    example_title: spam_2
  - text: "From: HuIu <[email protected]>\nX-MailFrom: [email protected]\nTo: <[email protected]>\nReply-To: \nSubject: Your HuIu Membership Has Ended But We Are Giving You An  Extra 90 Days, Today Only"
    example_title: spam_3
  - text: "From: Laurent Fainsin <[email protected]>\nX-MailFrom: \nTo: [email protected]\nReply-To: \nSubject: [net7] Fwd: Re: Demande d'un H24 net7"
    example_title: ham_1
  - text: "From: <[email protected]>\nX-MailFrom: \nTo: [email protected]\nReply-To: \nSubject: [net7] Fwd: [CERT-RENATER #84796] 2022/INCIDENT  (CERTSVP20220421-21) Presence potentielle d'une version vulnerable  d'instance Grafana sur grafana.thcon.party"
    example_title: ham_2
  - text: "From: <[email protected]>\nX-MailFrom: [email protected]\nTo: [email protected]\nReply-To: <[email protected]>\nSubject: Fwd: [CERT-RENATER #94661]  2023/INCIDENT (CERTSVP20230216-25) Probable Infection par un Trojan du type Info Stealer : AveMaria Stealer depuis  147.127.160.236 / neo.bde.inp-toulouse.fr  sur votre domaine enseeiht.fr"
    example_title: ham_3
    
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-multilingual-cased-finetuned-email-spam

This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the None dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- label_smoothing_factor: 0.1

### Framework versions

- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3