Update README.md
Browse files
README.md
CHANGED
@@ -7,6 +7,60 @@ tags:
|
|
7 |
- owkin
|
8 |
- histology
|
9 |
library_name: timm
|
10 |
-
license: apache-2.0
|
11 |
---
|
12 |
-
# Model card for vit_base_patch16_224.owkin_pancancer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
- owkin
|
8 |
- histology
|
9 |
library_name: timm
|
|
|
10 |
---
|
11 |
+
# Model card for vit_base_patch16_224.owkin_pancancer
|
12 |
+
|
13 |
+
A Vision Transformer (ViT) image classification model.
|
14 |
+
Trained on 40M pan-cancer histology tiles from TCGA by Owkin.
|
15 |
+
|
16 |
+
## Model Details
|
17 |
+
|
18 |
+
- **Model Type:** Image classification / feature backbone
|
19 |
+
- **Model Stats:**
|
20 |
+
- Params (M): 85.8
|
21 |
+
- Image size: 224 x 224 x 3
|
22 |
+
- **Papers:**
|
23 |
+
- Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling: https://www.medrxiv.org/content/10.1101/2023.07.21.23292757v2
|
24 |
+
- **Dataset:** TGCA: https://portal.gdc.cancer.gov/
|
25 |
+
- **Original:** https://github.com/owkin/HistoSSLscaling/
|
26 |
+
- **License:** https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt
|
27 |
+
|
28 |
+
## Model Usage
|
29 |
+
|
30 |
+
### Image Embeddings
|
31 |
+
```python
|
32 |
+
from urllib.request import urlopen
|
33 |
+
from PIL import Image
|
34 |
+
import timm
|
35 |
+
|
36 |
+
img = Image.open(urlopen(
|
37 |
+
"https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif"
|
38 |
+
))
|
39 |
+
|
40 |
+
model = timm.create_model(
|
41 |
+
'1aurent/vit_base_patch16_224.owkin_pancancer',
|
42 |
+
pretrained=True,
|
43 |
+
)
|
44 |
+
model = model.eval()
|
45 |
+
|
46 |
+
# get model specific transforms (normalization, resize)
|
47 |
+
data_config = timm.data.resolve_model_data_config(model)
|
48 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
49 |
+
|
50 |
+
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
51 |
+
```
|
52 |
+
|
53 |
+
## Citation
|
54 |
+
```bibtex
|
55 |
+
@article {Filiot2023.07.21.23292757,
|
56 |
+
author = {Alexandre Filiot and Ridouane Ghermi and Antoine Olivier and Paul Jacob and Lucas Fidon and Alice Mac Kain and Charlie Saillard and Jean-Baptiste Schiratti},
|
57 |
+
title = {Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling},
|
58 |
+
elocation-id = {2023.07.21.23292757},
|
59 |
+
year = {2023},
|
60 |
+
doi = {10.1101/2023.07.21.23292757},
|
61 |
+
publisher = {Cold Spring Harbor Laboratory Press},
|
62 |
+
URL = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757},
|
63 |
+
eprint = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757.full.pdf},
|
64 |
+
journal = {medRxiv}
|
65 |
+
}
|
66 |
+
```
|