202015004 commited on
Commit
f78b689
·
1 Parent(s): d2e6dac

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -46
README.md CHANGED
@@ -14,7 +14,7 @@ should probably proofread and complete it, then remove this comment. -->
14
 
15
  This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 1.7526
18
  - Wer: 0.1090
19
 
20
  ## Model description
@@ -48,51 +48,51 @@ The following hyperparameters were used during training:
48
 
49
  | Training Loss | Epoch | Step | Validation Loss | Wer |
50
  |:-------------:|:-----:|:-----:|:---------------:|:------:|
51
- | 82.2809 | 0.66 | 500 | 4.5229 | 0.1090 |
52
- | 1.8956 | 1.33 | 1000 | 1.8185 | 0.1090 |
53
- | 1.842 | 1.99 | 1500 | 1.9392 | 0.1090 |
54
- | 1.8254 | 2.65 | 2000 | 2.0335 | 0.1090 |
55
- | 1.8168 | 3.32 | 2500 | 1.8399 | 0.1090 |
56
- | 1.8353 | 3.98 | 3000 | 1.7997 | 0.1090 |
57
- | 1.8287 | 4.64 | 3500 | 1.7079 | 0.1090 |
58
- | 1.8191 | 5.31 | 4000 | 1.7340 | 0.1090 |
59
- | 1.8111 | 5.97 | 4500 | 1.6820 | 0.1090 |
60
- | 1.7992 | 6.63 | 5000 | 1.7079 | 0.1090 |
61
- | 1.7967 | 7.29 | 5500 | 1.7308 | 0.1090 |
62
- | 1.784 | 7.96 | 6000 | 1.7111 | 0.1090 |
63
- | 1.7859 | 8.62 | 6500 | 1.7576 | 0.1090 |
64
- | 1.7828 | 9.28 | 7000 | 1.8259 | 0.1090 |
65
- | 1.7894 | 9.95 | 7500 | 1.7357 | 0.1090 |
66
- | 1.7771 | 10.61 | 8000 | 1.9608 | 0.1090 |
67
- | 1.7682 | 11.27 | 8500 | 1.9535 | 0.1090 |
68
- | 1.7665 | 11.94 | 9000 | 1.9277 | 0.1090 |
69
- | 1.7672 | 12.6 | 9500 | 1.8406 | 0.1090 |
70
- | 1.7577 | 13.26 | 10000 | 1.7859 | 0.1090 |
71
- | 1.7617 | 13.93 | 10500 | 1.8030 | 0.1090 |
72
- | 1.7625 | 14.59 | 11000 | 1.7567 | 0.1090 |
73
- | 1.7586 | 15.25 | 11500 | 1.7667 | 0.1090 |
74
- | 1.7526 | 15.92 | 12000 | 1.7477 | 0.1090 |
75
- | 1.7533 | 16.58 | 12500 | 1.7285 | 0.1090 |
76
- | 1.75 | 17.24 | 13000 | 1.7542 | 0.1090 |
77
- | 1.7491 | 17.9 | 13500 | 1.7653 | 0.1090 |
78
- | 1.7483 | 18.57 | 14000 | 1.7344 | 0.1090 |
79
- | 1.7476 | 19.23 | 14500 | 1.7156 | 0.1090 |
80
- | 1.745 | 19.89 | 15000 | 1.7431 | 0.1090 |
81
- | 1.7422 | 20.56 | 15500 | 1.7591 | 0.1090 |
82
- | 1.744 | 21.22 | 16000 | 1.7794 | 0.1090 |
83
- | 1.743 | 21.88 | 16500 | 1.6921 | 0.1090 |
84
- | 1.7385 | 22.55 | 17000 | 1.7567 | 0.1090 |
85
- | 1.7405 | 23.21 | 17500 | 1.7527 | 0.1090 |
86
- | 1.7392 | 23.87 | 18000 | 1.7879 | 0.1090 |
87
- | 1.7388 | 24.54 | 18500 | 1.8047 | 0.1090 |
88
- | 1.7338 | 25.2 | 19000 | 1.7589 | 0.1090 |
89
- | 1.7368 | 25.86 | 19500 | 1.7774 | 0.1090 |
90
- | 1.7347 | 26.53 | 20000 | 1.7601 | 0.1090 |
91
- | 1.7349 | 27.19 | 20500 | 1.7783 | 0.1090 |
92
- | 1.7329 | 27.85 | 21000 | 1.7327 | 0.1090 |
93
- | 1.7306 | 28.51 | 21500 | 1.7403 | 0.1090 |
94
- | 1.7339 | 29.18 | 22000 | 1.7594 | 0.1090 |
95
- | 1.7304 | 29.84 | 22500 | 1.7526 | 0.1090 |
96
 
97
 
98
  ### Framework versions
 
14
 
15
  This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 1.7448
18
  - Wer: 0.1090
19
 
20
  ## Model description
 
48
 
49
  | Training Loss | Epoch | Step | Validation Loss | Wer |
50
  |:-------------:|:-----:|:-----:|:---------------:|:------:|
51
+ | 95.9046 | 0.66 | 500 | 992.2993 | 0.6180 |
52
+ | 14.0322 | 1.33 | 1000 | 1.8873 | 0.1090 |
53
+ | 1.8659 | 1.99 | 1500 | 1.7827 | 0.1090 |
54
+ | 1.851 | 2.65 | 2000 | 1.8489 | 0.1090 |
55
+ | 1.8218 | 3.32 | 2500 | 1.8943 | 0.1090 |
56
+ | 1.8108 | 3.98 | 3000 | 1.9250 | 0.1090 |
57
+ | 1.8228 | 4.64 | 3500 | 1.7555 | 0.1090 |
58
+ | 1.832 | 5.31 | 4000 | 1.7837 | 0.1090 |
59
+ | 1.8403 | 5.97 | 4500 | 1.6644 | 0.1090 |
60
+ | 1.8292 | 6.63 | 5000 | 1.6906 | 0.1090 |
61
+ | 1.8223 | 7.29 | 5500 | 1.6966 | 0.1090 |
62
+ | 1.8007 | 7.96 | 6000 | 1.6951 | 0.1090 |
63
+ | 1.7986 | 8.62 | 6500 | 1.7436 | 0.1090 |
64
+ | 1.7933 | 9.28 | 7000 | 1.8169 | 0.1090 |
65
+ | 1.7861 | 9.95 | 7500 | 1.7209 | 0.1090 |
66
+ | 1.7843 | 10.61 | 8000 | 1.9379 | 0.1090 |
67
+ | 1.7743 | 11.27 | 8500 | 1.9834 | 0.1090 |
68
+ | 1.7721 | 11.94 | 9000 | 1.9279 | 0.1090 |
69
+ | 1.7719 | 12.6 | 9500 | 1.8187 | 0.1090 |
70
+ | 1.7616 | 13.26 | 10000 | 1.7804 | 0.1090 |
71
+ | 1.7638 | 13.93 | 10500 | 1.7884 | 0.1090 |
72
+ | 1.7651 | 14.59 | 11000 | 1.7476 | 0.1090 |
73
+ | 1.7603 | 15.25 | 11500 | 1.7570 | 0.1090 |
74
+ | 1.7543 | 15.92 | 12000 | 1.7356 | 0.1090 |
75
+ | 1.7556 | 16.58 | 12500 | 1.7140 | 0.1090 |
76
+ | 1.751 | 17.24 | 13000 | 1.7453 | 0.1090 |
77
+ | 1.75 | 17.9 | 13500 | 1.7648 | 0.1090 |
78
+ | 1.7492 | 18.57 | 14000 | 1.7338 | 0.1090 |
79
+ | 1.7484 | 19.23 | 14500 | 1.7093 | 0.1090 |
80
+ | 1.7461 | 19.89 | 15000 | 1.7393 | 0.1090 |
81
+ | 1.7429 | 20.56 | 15500 | 1.7605 | 0.1090 |
82
+ | 1.7446 | 21.22 | 16000 | 1.7782 | 0.1090 |
83
+ | 1.7435 | 21.88 | 16500 | 1.6749 | 0.1090 |
84
+ | 1.7392 | 22.55 | 17000 | 1.7468 | 0.1090 |
85
+ | 1.741 | 23.21 | 17500 | 1.7406 | 0.1090 |
86
+ | 1.7394 | 23.87 | 18000 | 1.7787 | 0.1090 |
87
+ | 1.739 | 24.54 | 18500 | 1.7969 | 0.1090 |
88
+ | 1.7341 | 25.2 | 19000 | 1.7490 | 0.1090 |
89
+ | 1.7371 | 25.86 | 19500 | 1.7783 | 0.1090 |
90
+ | 1.735 | 26.53 | 20000 | 1.7540 | 0.1090 |
91
+ | 1.7353 | 27.19 | 20500 | 1.7735 | 0.1090 |
92
+ | 1.7331 | 27.85 | 21000 | 1.7188 | 0.1090 |
93
+ | 1.7308 | 28.51 | 21500 | 1.7349 | 0.1090 |
94
+ | 1.7341 | 29.18 | 22000 | 1.7531 | 0.1090 |
95
+ | 1.7305 | 29.84 | 22500 | 1.7448 | 0.1090 |
96
 
97
 
98
  ### Framework versions