Upload PPO CartPole-v1 trained agent
Browse files- PPO-CartPole-v1.zip +2 -2
- PPO-CartPole-v1/data +34 -22
- PPO-CartPole-v1/policy.optimizer.pth +2 -2
- PPO-CartPole-v1/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
PPO-CartPole-v1.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c93a120280c3d62de4fd6c8499d11e80a853311b0b44845ddf202e221e4bb25
|
3 |
+
size 141633
|
PPO-CartPole-v1/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 0,
|
22 |
"policy_kwargs": {},
|
@@ -42,28 +42,40 @@
|
|
42 |
"_np_random": "RandomState(MT19937)"
|
43 |
},
|
44 |
"n_envs": 32,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": 0,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
-
"tensorboard_log": "
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFpjOlxQcm9ncmFtRGF0YVxNaW5pY29uZGEzXGVudnNccHl0b3JjaFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
},
|
57 |
-
"_last_obs":
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
"_last_original_obs": null,
|
60 |
"_episode_num": 0,
|
61 |
"use_sde": false,
|
62 |
"sde_sample_freq": -1,
|
63 |
-
"_current_progress_remaining":
|
64 |
-
"ep_info_buffer":
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
"n_steps": 1000,
|
68 |
"gamma": 0.999,
|
69 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x000002588F4A2948>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000002588F4A29D8>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000002588F4A2A68>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000002588F4A2AF8>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x000002588F4A2B88>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x000002588F4A2C18>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000002588F4A2CA8>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x000002588F4A2D38>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000002588F4A2DC8>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000002588F4A2E58>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x000002588F4A2EE8>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x000002588F49C2A0>"
|
20 |
},
|
21 |
"verbose": 0,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": "RandomState(MT19937)"
|
43 |
},
|
44 |
"n_envs": 32,
|
45 |
+
"num_timesteps": 256000,
|
46 |
+
"_total_timesteps": 250000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": 0,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1659605087.5812905,
|
51 |
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": ".logs/",
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFpjOlxQcm9ncmFtRGF0YVxNaW5pY29uZGEzXGVudnNccHl0b3JjaFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI2l9j6E7yc+O/0DvVTUY75I6qk+dVLUvuCAHb0OyPY+6jIYvrGvIjzYsYa992y7vYoF4L52e2C+9qJzPIq2OD77VsC+A5XFvj0xkT2mweM+6Ka0vuu1Pb5ds8Y8upFsPVhhRbx2a0u95DpCvVj3BDm3VWi+1/RLPL5wDrwvdnu9yXupPXfi1b4RiwG9akqzPss7Gj7xkxa+XSe4PEGfm70/Z4O+nC1hPuF+rD2ZuNu9Q+mNvZs8jjz4AhY8UEydvqQBqr0gqCQ+qa5fPBWu1bu7aHI8UtbGvhJRWzygU5k+4ofWvK8vO777Qvs7t7Z1vdHHKT7s+L08HOI1PaTDmL7Tvpi8If3Pvh85nTt04NY9LGttvRDlRL4+jJy7f4LmPjsaHT46Q7Q8jz3Eu2SFf70z0H89rclZPpBVCz2Fooy+WRXQvH1z/Dr0+9w8YsKIu9NKVj7d1rG+WNo4OkDSaD50RpY9HZ4UP0K5wjxMuBC/5s+FvFYjcj5n6gA9uaqKvrA0KL6Hd0a/v/muPDg8Hz+Q8Pe+caa8vh7DWz1bNUk+XW0ZuyNydb6gbio8zTF2PpQmJb2PtG49mCkBPXSPd74pWM898D5Zvtb1G72QyZE+GYytPma0rrxLfcm8tL3AvQIt9b0mvic+YL3yO/943ry6zDu+1FgQPpUWKTzt+ue9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksgSwSGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
64 |
+
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.02400000000000002,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdATDwv114gR3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEw915B1Lap1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMQ5Y5ksjFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATEQ5myxA0XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExFX8O09hZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMReJxeb/fdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATEZEfDDTB3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExIT238XN11fZQoaAZHQH9AAAAAAABoB030AWgIR0BMSHAZbY9QdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATE4O+ZgG8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExQGgSOBDp1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMUT/6wdKedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATFrTBqKxcHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExfKjBVMmF1fZQoaAZHQHUAAAAAAABoB01QAWgIR0BMYPOQhfShdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATGQEIPbwjXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExlKifxtpF1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMaFr2xptadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATGg6r/82rHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExs86mwaBJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMbx9XtBv8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATHBEWqLjxXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExyUD+zdDZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMdqeK8+RpdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATHhQN0/4ZnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEx4sf7rLQp1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMfKdpZfUndX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATH3uAqd6LXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEyBP+GXXy11fZQoaAZHQH9AAAAAAABoB030AWgIR0BMgqdQO4G2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATITTH80k4XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEyJjDsMRYl1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMizUAksz3dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATIy8J2MbWHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEySWzF+/g11fZQoaAZHQH9AAAAAAABoB030AWgIR0BMkx8lXzUadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUGQj4YaYNXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFBkhddE9dN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQZKaCtihGdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUGWbI91U2nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFBlmyPdVNp1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQaFrRBu4xdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUGlgSeyzHHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFBqA7gbZOB1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQbq4pc5bRdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUHD2f029+XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFBx6v7m+0x1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQc4OUdJardX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUHQGSpzcRHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFB1jmjj7yh1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQdX4fwI+odX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUHfg2qDK5nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFB5BvaURnR1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQeapcX3xndX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUHrAJswcpHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFB8/B3zMA51fZQoaAZHQH9AAAAAAABoB030AWgIR0BQfcj3VTaTdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUH4aLn9vTHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCABGQSzxB1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQgLgKnei0dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUIJxT850bXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCDBF/hESd1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQg/zFuNxVdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUIZP0qYqonV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCHJOnEVFh1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQh+j2zv7WdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUIq35N47inV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCLCXhOxjd1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQi3vc8DB/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUIvND+irUHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCL/QjUuth1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQjPGMn7YTdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUIzzjFQ2uXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCPpT/ACXB1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQkLuYx+KCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUJFfICEHuHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCWKCQLeAN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQmFg+hXbNdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUJk86mwaBXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCaxWkrPMV1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQm1h1DBuXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUJzTqjafz3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCc078vVVh1fZQoaAZHQHigAAAAAABoB02KAWgIR0BQnyDujRD1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUJ8AT7EYO3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCgBRhttQ91fZQoaAZHQH9AAAAAAABoB030AWgIR0BQoJdrwe/6dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUKGeK8+Ro3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCjmjj7yhB1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQpF5KODJ2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUKSv/zasZHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCmqo60Y0l1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQqPnGKhtcdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUKmcriEQG3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCqkkrwvxp1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQrL3XZoPDdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUK2RxLkCFXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCuZi/fwZx1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQsUnogV45dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAULGcFyJbdXVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 32,
|
79 |
"n_steps": 1000,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
PPO-CartPole-v1/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b187817c2efa11e08612609d978f47f3c02e62135f7c4e98f4fe12425a603b5
|
3 |
+
size 82873
|
PPO-CartPole-v1/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 40641
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ce651e006f6858b615cc2c7e548d53d458de5202bba1eab4eee0865219f418c
|
3 |
size 40641
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 500.00 +/- 0.00
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000001A01AC81288>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000001A01AC81318>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000001A01AC813A8>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000001A01AC81438>", "_build": "<function ActorCriticPolicy._build at 0x000001A01AC814C8>", "forward": "<function ActorCriticPolicy.forward at 0x000001A01AC81558>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000001A01AC815E8>", "_predict": "<function ActorCriticPolicy._predict at 0x000001A01AC81678>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000001A01AC81708>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000001A01AC81798>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000001A01AC81828>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x000001A01AC64150>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAACamZnA//9//1B31r7//3//lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 2, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 32, "num_timesteps": 0, "_total_timesteps": 0, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": null, "learning_rate": 0.0003, "tensorboard_log": "Logs/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFpjOlxQcm9ncmFtRGF0YVxNaW5pY29uZGEzXGVudnNccHl0b3JjaFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": null, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 1, "ep_info_buffer": null, "ep_success_buffer": null, "_n_updates": 0, "n_steps": 1000, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFpjOlxQcm9ncmFtRGF0YVxNaW5pY29uZGEzXGVudnNccHl0b3JjaFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19041-SP0 10.0.19041", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000002588F4A2948>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000002588F4A29D8>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000002588F4A2A68>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000002588F4A2AF8>", "_build": "<function ActorCriticPolicy._build at 0x000002588F4A2B88>", "forward": "<function ActorCriticPolicy.forward at 0x000002588F4A2C18>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000002588F4A2CA8>", "_predict": "<function ActorCriticPolicy._predict at 0x000002588F4A2D38>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000002588F4A2DC8>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000002588F4A2E58>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000002588F4A2EE8>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x000002588F49C2A0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVdwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAACamZnA//9//1B31r7//3//lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 2, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 32, "num_timesteps": 256000, "_total_timesteps": 250000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1659605087.5812905, "learning_rate": 0.0003, "tensorboard_log": ".logs/", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFpjOlxQcm9ncmFtRGF0YVxNaW5pY29uZGEzXGVudnNccHl0b3JjaFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI2l9j6E7yc+O/0DvVTUY75I6qk+dVLUvuCAHb0OyPY+6jIYvrGvIjzYsYa992y7vYoF4L52e2C+9qJzPIq2OD77VsC+A5XFvj0xkT2mweM+6Ka0vuu1Pb5ds8Y8upFsPVhhRbx2a0u95DpCvVj3BDm3VWi+1/RLPL5wDrwvdnu9yXupPXfi1b4RiwG9akqzPss7Gj7xkxa+XSe4PEGfm70/Z4O+nC1hPuF+rD2ZuNu9Q+mNvZs8jjz4AhY8UEydvqQBqr0gqCQ+qa5fPBWu1bu7aHI8UtbGvhJRWzygU5k+4ofWvK8vO777Qvs7t7Z1vdHHKT7s+L08HOI1PaTDmL7Tvpi8If3Pvh85nTt04NY9LGttvRDlRL4+jJy7f4LmPjsaHT46Q7Q8jz3Eu2SFf70z0H89rclZPpBVCz2Fooy+WRXQvH1z/Dr0+9w8YsKIu9NKVj7d1rG+WNo4OkDSaD50RpY9HZ4UP0K5wjxMuBC/5s+FvFYjcj5n6gA9uaqKvrA0KL6Hd0a/v/muPDg8Hz+Q8Pe+caa8vh7DWz1bNUk+XW0ZuyNydb6gbio8zTF2PpQmJb2PtG49mCkBPXSPd74pWM898D5Zvtb1G72QyZE+GYytPma0rrxLfcm8tL3AvQIt9b0mvic+YL3yO/943ry6zDu+1FgQPpUWKTzt+ue9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksgSwSGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdATDwv114gR3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEw915B1Lap1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMQ5Y5ksjFdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATEQ5myxA0XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExFX8O09hZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMReJxeb/fdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATEZEfDDTB3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExIT238XN11fZQoaAZHQH9AAAAAAABoB030AWgIR0BMSHAZbY9QdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATE4O+ZgG8nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExQGgSOBDp1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMUT/6wdKedX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATFrTBqKxcHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExfKjBVMmF1fZQoaAZHQHUAAAAAAABoB01QAWgIR0BMYPOQhfShdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATGQEIPbwjXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExlKifxtpF1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMaFr2xptadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATGg6r/82rHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExs86mwaBJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMbx9XtBv8dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATHBEWqLjxXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQExyUD+zdDZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMdqeK8+RpdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATHhQN0/4ZnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEx4sf7rLQp1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMfKdpZfUndX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATH3uAqd6LXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEyBP+GXXy11fZQoaAZHQH9AAAAAAABoB030AWgIR0BMgqdQO4G2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATITTH80k4XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEyJjDsMRYl1fZQoaAZHQH9AAAAAAABoB030AWgIR0BMizUAksz3dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdATIy8J2MbWHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQEySWzF+/g11fZQoaAZHQH9AAAAAAABoB030AWgIR0BMkx8lXzUadX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUGQj4YaYNXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFBkhddE9dN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQZKaCtihGdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUGWbI91U2nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFBlmyPdVNp1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQaFrRBu4xdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUGlgSeyzHHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFBqA7gbZOB1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQbq4pc5bRdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUHD2f029+XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFBx6v7m+0x1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQc4OUdJardX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUHQGSpzcRHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFB1jmjj7yh1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQdX4fwI+odX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUHfg2qDK5nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFB5BvaURnR1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQeapcX3xndX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUHrAJswcpHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFB8/B3zMA51fZQoaAZHQH9AAAAAAABoB030AWgIR0BQfcj3VTaTdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUH4aLn9vTHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCABGQSzxB1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQgLgKnei0dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUIJxT850bXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCDBF/hESd1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQg/zFuNxVdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUIZP0qYqonV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCHJOnEVFh1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQh+j2zv7WdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUIq35N47inV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCLCXhOxjd1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQi3vc8DB/dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUIvND+irUHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCL/QjUuth1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQjPGMn7YTdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUIzzjFQ2uXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCPpT/ACXB1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQkLuYx+KCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUJFfICEHuHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCWKCQLeAN1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQmFg+hXbNdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUJk86mwaBXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCaxWkrPMV1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQm1h1DBuXdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUJzTqjafz3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCc078vVVh1fZQoaAZHQHigAAAAAABoB02KAWgIR0BQnyDujRD1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUJ8AT7EYO3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCgBRhttQ91fZQoaAZHQH9AAAAAAABoB030AWgIR0BQoJdrwe/6dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUKGeK8+Ro3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCjmjj7yhB1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQpF5KODJ2dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUKSv/zasZHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCmqo60Y0l1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQqPnGKhtcdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUKmcriEQG3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCqkkrwvxp1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQrL3XZoPDdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAUK2RxLkCFXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQFCuZi/fwZx1fZQoaAZHQH9AAAAAAABoB030AWgIR0BQsUnogV45dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAULGcFyJbdXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 32, "n_steps": 1000, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVigIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjFpjOlxQcm9ncmFtRGF0YVxNaW5pY29uZGEzXGVudnNccHl0b3JjaFxsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19041-SP0 10.0.19041", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-04T13:17:15.596733"}
|