Updates readme
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ model-index:
|
|
14 |
---
|
15 |
|
16 |
|
17 |
-
#
|
18 |
|
19 |
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the open_platypus dataset.
|
20 |
It achieves the following results on the evaluation set:
|
@@ -23,15 +23,30 @@ It achieves the following results on the evaluation set:
|
|
23 |
|
24 |
## Model description
|
25 |
|
26 |
-
|
27 |
|
28 |
## Intended uses & limitations
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
## Training and evaluation data
|
33 |
|
34 |
-
|
35 |
|
36 |
## Training procedure
|
37 |
|
@@ -51,10 +66,12 @@ The following hyperparameters were used during training:
|
|
51 |
|
52 |
### Training results
|
53 |
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
### Framework versions
|
57 |
-
|
58 |
- PEFT 0.11.1
|
59 |
- Transformers 4.42.3
|
60 |
- Pytorch 2.3.1+cu121
|
|
|
14 |
---
|
15 |
|
16 |
|
17 |
+
# Supervised Fine-Tuned Model
|
18 |
|
19 |
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the open_platypus dataset.
|
20 |
It achieves the following results on the evaluation set:
|
|
|
23 |
|
24 |
## Model description
|
25 |
|
26 |
+
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the open_platypus dataset.
|
27 |
|
28 |
## Intended uses & limitations
|
29 |
|
30 |
+
### How to use
|
31 |
+
|
32 |
+
You can use this model directly with a pipeline for text classification. Here is an example:
|
33 |
+
|
34 |
+
```python
|
35 |
+
from transformers import AutoModel, AutoTokenizer
|
36 |
+
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained("2nji/llama3-platypus")
|
38 |
+
model = AutoModel.from_pretrained("2nji/llama3-platypus")
|
39 |
+
|
40 |
+
inputs = tokenizer("Example input text", return_tensors="pt")
|
41 |
+
with torch.no_grad():
|
42 |
+
outputs = model(**inputs)
|
43 |
+
|
44 |
+
print(outputs)
|
45 |
+
```
|
46 |
|
47 |
## Training and evaluation data
|
48 |
|
49 |
+
The model was fine-tuned on the open_platypus dataset.
|
50 |
|
51 |
## Training procedure
|
52 |
|
|
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
+
The model was trained on a single NVIDIA H100 GPU with the following results:
|
70 |
+
- Loss: 0.6769
|
71 |
+
- Accuracy: 0.8116
|
72 |
|
73 |
|
74 |
### Framework versions
|
|
|
75 |
- PEFT 0.11.1
|
76 |
- Transformers 4.42.3
|
77 |
- Pytorch 2.3.1+cu121
|