|
import torch
|
|
from safetensors.torch import safe_open
|
|
from modules import scripts, sd_models, shared
|
|
import gradio as gr
|
|
from modules.processing import process_images
|
|
|
|
|
|
class KeyBasedModelMerger(scripts.Script):
|
|
def title(self):
|
|
return "Key-based model merging"
|
|
|
|
def ui(self, is_txt2img):
|
|
model_names = sorted(sd_models.checkpoints_list.keys(), key=str.casefold)
|
|
|
|
model_a_dropdown = gr.Dropdown(
|
|
label="Model A", choices=model_names, value=model_names[0] if model_names else None
|
|
)
|
|
model_b_dropdown = gr.Dropdown(
|
|
label="Model B", choices=model_names, value=model_names[0] if model_names else None
|
|
)
|
|
model_c_dropdown = gr.Dropdown(
|
|
label="Model C (Add difference mode用)", choices=model_names, value=model_names[0] if model_names else None
|
|
)
|
|
keys_and_alphas_textbox = gr.Textbox(
|
|
label="マージするテンソルのキーとマージ比率 (部分一致, 1行に1つ, カンマ区切り)",
|
|
lines=5,
|
|
placeholder="例:\nmodel.diffusion_model.input_blocks.0,0.5\nmodel.diffusion_model.middle_block,0.3"
|
|
)
|
|
merge_checkbox = gr.Checkbox(label="モデルのマージを有効にする", value=True)
|
|
use_gpu_checkbox = gr.Checkbox(label="GPUを使用", value=True)
|
|
batch_size_slider = gr.Slider(minimum=1, maximum=500, step=1, value=250, label="KeyMgerge_BatchSize")
|
|
merge_mode_dropdown = gr.Dropdown(
|
|
label="Merge Mode",
|
|
choices=["Normal", "Add difference (B-C to Current)", "Add difference (A + (B-C) to Current)"],
|
|
value="Normal"
|
|
)
|
|
|
|
return [model_a_dropdown, model_b_dropdown, model_c_dropdown, keys_and_alphas_textbox,
|
|
merge_checkbox, use_gpu_checkbox, batch_size_slider, merge_mode_dropdown]
|
|
|
|
def run(self, p, model_a_name, model_b_name, model_c_name, keys_and_alphas_str,
|
|
merge_enabled, use_gpu, batch_size, merge_mode):
|
|
if not model_b_name:
|
|
print("Error: Model B is not selected.")
|
|
return p
|
|
|
|
try:
|
|
|
|
if merge_mode == "Normal":
|
|
model_a_filename = sd_models.checkpoints_list[model_a_name].filename
|
|
model_b_filename = sd_models.checkpoints_list[model_b_name].filename
|
|
elif merge_mode == "Add difference (B-C to Current)":
|
|
model_b_filename = sd_models.checkpoints_list[model_b_name].filename
|
|
model_c_filename = sd_models.checkpoints_list[model_c_name].filename
|
|
elif merge_mode == "Add difference (A + (B-C) to Current)":
|
|
model_a_filename = sd_models.checkpoints_list[model_a_name].filename
|
|
model_b_filename = sd_models.checkpoints_list[model_b_name].filename
|
|
model_c_filename = sd_models.checkpoints_list[model_c_name].filename
|
|
else:
|
|
raise ValueError(f"Invalid merge mode: ")
|
|
|
|
except KeyError as e:
|
|
print(f"Error: Selected model is not found in checkpoints list. ")
|
|
return p
|
|
|
|
|
|
if merge_enabled:
|
|
input_keys_and_alphas = []
|
|
for line in keys_and_alphas_str.split("\n"):
|
|
if "," in line:
|
|
key_part, alpha_str = line.split(",", 1)
|
|
try:
|
|
alpha = float(alpha_str)
|
|
input_keys_and_alphas.append((key_part, alpha))
|
|
except ValueError:
|
|
print(f"Invalid alpha value in line '', skipping...")
|
|
|
|
|
|
model_keys = list(shared.sd_model.state_dict().keys())
|
|
|
|
|
|
final_keys_and_alphas = {}
|
|
for key_part, alpha in input_keys_and_alphas:
|
|
for model_key in model_keys:
|
|
if key_part in model_key:
|
|
final_keys_and_alphas[model_key] = alpha
|
|
|
|
|
|
device = "cuda" if use_gpu and torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
batched_keys = list(final_keys_and_alphas.items())
|
|
|
|
|
|
if merge_mode == "Normal":
|
|
with safe_open(model_a_filename, framework="pt", device=device) as f_a, \
|
|
safe_open(model_b_filename, framework="pt", device=device) as f_b:
|
|
self._merge_models(f_a, f_b, None, batched_keys, final_keys_and_alphas, batch_size, merge_mode, device)
|
|
elif merge_mode == "Add difference (B-C to Current)":
|
|
with safe_open(model_b_filename, framework="pt", device=device) as f_b, \
|
|
safe_open(model_c_filename, framework="pt", device=device) as f_c:
|
|
self._merge_models(None, f_b, f_c, batched_keys, final_keys_and_alphas, batch_size, merge_mode, device)
|
|
elif merge_mode == "Add difference (A + (B-C) to Current)":
|
|
with safe_open(model_a_filename, framework="pt", device=device) as f_a, \
|
|
safe_open(model_b_filename, framework="pt", device=device) as f_b, \
|
|
safe_open(model_c_filename, framework="pt", device=device) as f_c:
|
|
self._merge_models(f_a, f_b, f_c, batched_keys, final_keys_and_alphas, batch_size, merge_mode, device)
|
|
else:
|
|
raise ValueError(f"Invalid merge mode: ")
|
|
|
|
|
|
return process_images(p)
|
|
|
|
def _merge_models(self, f_a, f_b, f_c, batched_keys, final_keys_and_alphas, batch_size, merge_mode, device):
|
|
|
|
for i in range(0, len(batched_keys), batch_size):
|
|
batch = batched_keys[i:i + batch_size]
|
|
|
|
|
|
tensors_a = [f_a.get_tensor(key) for key, _ in batch] if f_a is not None else None
|
|
tensors_b = [f_b.get_tensor(key) for key, _ in batch] if f_b is not None else None
|
|
tensors_c = [f_c.get_tensor(key) for key, _ in batch] if f_c is not None else None
|
|
alphas = [final_keys_and_alphas[key] for key, _ in batch]
|
|
|
|
|
|
for j, (key, alpha) in enumerate(batch):
|
|
tensor_a = tensors_a[j] if tensors_a is not None else None
|
|
tensor_b = tensors_b[j] if tensors_b is not None else None
|
|
tensor_c = tensors_c[j] if tensors_c is not None else None
|
|
|
|
if merge_mode == "Normal":
|
|
merged_tensor = torch.lerp(tensor_a, tensor_b, alpha)
|
|
print(f"NomalMerged:{alpha}:{key}")
|
|
elif merge_mode == "Add difference (B-C to Current)":
|
|
merged_tensor = shared.sd_model.state_dict()[key] + alpha * (tensor_b - tensor_c)
|
|
print(f"(B-C to Current):{alpha}:{key}")
|
|
elif merge_mode == "Add difference (A + (B-C) to Current)":
|
|
merged_tensor = tensor_a + alpha * (tensor_b - tensor_c)
|
|
print(f"(A + (B-C) to Current):{alpha}:{key}")
|
|
else:
|
|
raise ValueError(f"Invalid merge mode: ")
|
|
|
|
shared.sd_model.state_dict()[key].copy_(merged_tensor.to(device))
|
|
|
|
|