--- license: mit language: - en pipeline_tag: audio-classification tags: - wavlm - msp-podcast - emotion-recognition - audio - speech - categorical - lucas --- The model was trained on [MSP-Podcast](https://ecs.utdallas.edu/research/researchlabs/msp-lab/MSP-Podcast.html) for the Odyssey 2024 Emotion Recognition competition baseline
This particular model is the categorical based model which predict "Angry", "Sad", "Happy", "Surprise", "Fear", "Disgust", "Contempt" and "Neutral". # Benchmarks CCC based on test3 and Development sets of the Odyssey Competition
Categorical Setup
Test 3Development
F1-Mic. F1-Ma. Prec. Rec. F1-Mic. F1-Ma. Prec. Rec.
0.327 0.311 0.332 0.325 0.409 0.307 0.316 0.345
For more details: [demo](https://huggingface.co/spaces/3loi/WavLM-SER-Multi-Baseline-Odyssey2024), [paper/soon]() and [GitHub](https://github.com/MSP-UTD/MSP-Podcast_Challenge/tree/main). ``` @InProceedings{Goncalves_2024, author={L. Goncalves and A. N. Salman and A. {Reddy Naini} and L. Moro-Velazquez and T. Thebaud and L. {Paola Garcia} and N. Dehak and B. Sisman and C. Busso}, title={Odyssey2024 - Speech Emotion Recognition Challenge: Dataset, Baseline Framework, and Results}, booktitle={Odyssey 2024: The Speaker and Language Recognition Workshop)}, volume={To appear}, year={2024}, month={June}, address = {Quebec, Canada}, } ``` # Usage ```python from transformers import AutoModelForAudioClassification import librosa, torch #load model model = AutoModelForAudioClassification.from_pretrained("3loi/SER-Odyssey-Baseline-WavLM-Categorical-Attributes", trust_remote_code=True) #get mean/std mean = model.config.mean std = model.config.std #load an audio file audio_path = "/path/to/audio.wav" raw_wav, _ = librosa.load(audio_path, sr=model.config.sampling_rate) #normalize the audio by mean/std norm_wav = (raw_wav - mean) / (std+0.000001) #generate the mask mask = torch.ones(1, len(norm_wav)) #batch it (add dim) wavs = torch.tensor(norm_wav).unsqueeze(0) #predict with torch.no_grad(): pred = model(wavs, mask) print(model.config.id2label) print(pred) #{0: 'Angry', 1: 'Sad', 2: 'Happy', 3: 'Surprise', 4: 'Fear', 5: 'Disgust', 6: 'Contempt', 7: 'Neutral'} #tensor([[0.0015, 0.3651, 0.0593, 0.0315, 0.0600, 0.0125, 0.0319, 0.4382]]) #convert logits to probability probabilities = torch.nn.functional.softmax(pred, dim=1) print(probabilities) #[[0.0015, 0.3651, 0.0593, 0.0315, 0.0600, 0.0125, 0.0319, 0.4382]] ```