File size: 3,022 Bytes
f3fbb51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: finetuned-FER2013
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.6788575409265064
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetuned-FER2013
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8812
- Accuracy: 0.6789
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5466 | 1.0 | 202 | 1.5022 | 0.4500 |
| 1.3372 | 2.0 | 404 | 1.1727 | 0.5632 |
| 1.2372 | 3.0 | 606 | 1.0636 | 0.6075 |
| 1.2096 | 4.0 | 808 | 1.0200 | 0.6116 |
| 1.145 | 5.0 | 1010 | 0.9769 | 0.6325 |
| 1.1589 | 6.0 | 1212 | 0.9515 | 0.6405 |
| 1.0752 | 7.0 | 1414 | 0.9395 | 0.6458 |
| 1.0524 | 8.0 | 1616 | 0.9331 | 0.6458 |
| 1.0829 | 9.0 | 1818 | 0.9173 | 0.6573 |
| 1.0219 | 10.0 | 2020 | 0.9114 | 0.6597 |
| 0.9986 | 11.0 | 2222 | 0.9034 | 0.6580 |
| 1.013 | 12.0 | 2424 | 0.9004 | 0.6656 |
| 1.0133 | 13.0 | 2626 | 0.8940 | 0.6628 |
| 1.0064 | 14.0 | 2828 | 0.8916 | 0.6649 |
| 0.9858 | 15.0 | 3030 | 0.8882 | 0.6733 |
| 0.9863 | 16.0 | 3232 | 0.8850 | 0.6740 |
| 1.0058 | 17.0 | 3434 | 0.8856 | 0.6747 |
| 0.9637 | 18.0 | 3636 | 0.8852 | 0.6722 |
| 0.9803 | 19.0 | 3838 | 0.8829 | 0.6754 |
| 0.9356 | 20.0 | 4040 | 0.8812 | 0.6789 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|