--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: finetuned-FER2013 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6788575409265064 --- # finetuned-FER2013 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8812 - Accuracy: 0.6789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.5466 | 1.0 | 202 | 1.5022 | 0.4500 | | 1.3372 | 2.0 | 404 | 1.1727 | 0.5632 | | 1.2372 | 3.0 | 606 | 1.0636 | 0.6075 | | 1.2096 | 4.0 | 808 | 1.0200 | 0.6116 | | 1.145 | 5.0 | 1010 | 0.9769 | 0.6325 | | 1.1589 | 6.0 | 1212 | 0.9515 | 0.6405 | | 1.0752 | 7.0 | 1414 | 0.9395 | 0.6458 | | 1.0524 | 8.0 | 1616 | 0.9331 | 0.6458 | | 1.0829 | 9.0 | 1818 | 0.9173 | 0.6573 | | 1.0219 | 10.0 | 2020 | 0.9114 | 0.6597 | | 0.9986 | 11.0 | 2222 | 0.9034 | 0.6580 | | 1.013 | 12.0 | 2424 | 0.9004 | 0.6656 | | 1.0133 | 13.0 | 2626 | 0.8940 | 0.6628 | | 1.0064 | 14.0 | 2828 | 0.8916 | 0.6649 | | 0.9858 | 15.0 | 3030 | 0.8882 | 0.6733 | | 0.9863 | 16.0 | 3232 | 0.8850 | 0.6740 | | 1.0058 | 17.0 | 3434 | 0.8856 | 0.6747 | | 0.9637 | 18.0 | 3636 | 0.8852 | 0.6722 | | 0.9803 | 19.0 | 3838 | 0.8829 | 0.6754 | | 0.9356 | 20.0 | 4040 | 0.8812 | 0.6789 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0