File size: 37,016 Bytes
35fcfe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
{
"cells": [
{
"cell_type": "markdown",
"id": "74bd5ceb-afa1-4bfd-ba39-10af717cf2a5",
"metadata": {},
"source": [
"Remember to change the test and model Path!\n",
"Since I'm using Embedding to encode headlines to vector, it takes 10+ min. to encode information for test set which I cannot do it on my end since I do not have access to hiddne test set! "
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a458f2b7-3ab1-479f-9627-ef7ef8ef76b4",
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"from torch.utils.data import Dataset, DataLoader, random_split, SubsetRandomSampler\n",
"from tqdm import tqdm\n",
"import numpy as np\n",
"import random\n",
"import os\n",
"import copy\n",
"from torch.utils.data import TensorDataset\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d7943628-3454-4d21-a95d-ca53acd9b6dc",
"metadata": {},
"outputs": [],
"source": [
"class LabelSmoothingBCELoss(nn.Module):\n",
" def __init__(self, smoothing=0.1):\n",
" \"\"\"\n",
" Label Smoothing Binary Cross Entropy Loss\n",
" \n",
" Args:\n",
" smoothing (float): Amount of label smoothing to apply\n",
" \"\"\"\n",
" super(LabelSmoothingBCELoss, self).__init__()\n",
" self.smoothing = smoothing\n",
" \n",
" def forward(self, predictions, targets):\n",
" \"\"\"\n",
" Compute label-smoothed binary cross entropy loss\n",
" \n",
" Args:\n",
" predictions (torch.Tensor): Model predictions\n",
" targets (torch.Tensor): Binary labels\n",
" \n",
" Returns:\n",
" torch.Tensor: Smoothed loss\n",
" \"\"\"\n",
" # Apply label smoothing\n",
" smooth_targets = targets * (1 - self.smoothing) + 0.5 * self.smoothing\n",
" \n",
" # Standard Binary Cross Entropy Loss\n",
" loss = nn.functional.binary_cross_entropy(predictions, smooth_targets)\n",
" \n",
" return loss\n",
"\n",
"class EarlyStoppingCallback:\n",
" def __init__(self, patience=5, min_delta=0.001):\n",
" \"\"\"\n",
" Early stopping mechanism\n",
" \n",
" Args:\n",
" patience (int): Number of epochs to wait for improvement\n",
" min_delta (float): Minimum change to qualify as an improvement\n",
" \"\"\"\n",
" self.patience = patience\n",
" self.min_delta = min_delta\n",
" self.counter = 0\n",
" self.best_loss = float('inf')\n",
" self.early_stop = False\n",
" self.best_model_state = None\n",
" \n",
" def __call__(self, val_loss, model):\n",
" \"\"\"\n",
" Check if training should stop\n",
" \n",
" Args:\n",
" val_loss (float): Current validation loss\n",
" model (nn.Module): Current model state\n",
" \n",
" Returns:\n",
" bool: Whether to stop training\n",
" \"\"\"\n",
" if val_loss < self.best_loss - self.min_delta:\n",
" self.best_loss = val_loss\n",
" self.counter = 0\n",
" # Save the best model state\n",
" self.best_model_state = copy.deepcopy(model.state_dict())\n",
" else:\n",
" self.counter += 1\n",
" if self.counter >= self.patience:\n",
" self.early_stop = True\n",
" \n",
" return self.early_stop\n",
"\n",
"class EnsembleMLPClassifier(nn.Module):\n",
" def __init__(self, \n",
" input_dim=1024, # BGE embedding dimension\n",
" hidden_layers=None,\n",
" dropout_rate=0.2,\n",
" activation=nn.ReLU(), # Allow passing activation functions dynamically\n",
" device=None):\n",
" super(EnsembleMLPClassifier, self).__init__()\n",
" \n",
" # Default configuration if not provided\n",
" if hidden_layers is None:\n",
" hidden_layers = [512, 256, 128]\n",
" \n",
" # Set device (GPU if available, else CPU)\n",
" self.device = device or torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
" \n",
" # Store initialization parameters\n",
" self.input_dim = input_dim\n",
" self.hidden_layers = hidden_layers\n",
" self.dropout_rate = dropout_rate\n",
" self.activation = activation\n",
" \n",
" # Add linear gate mechanism\n",
" self.gate = nn.Linear(input_dim, input_dim, bias=False)\n",
" \n",
" # Create layers dynamically based on hidden_layers specification\n",
" layers = []\n",
" prev_dim = input_dim\n",
" for hidden_dim in hidden_layers:\n",
" # Dense Layer with dynamic activation and BatchNorm\n",
" layers.extend([\n",
" nn.Linear(prev_dim, hidden_dim),\n",
" nn.BatchNorm1d(hidden_dim),\n",
" activation,\n",
" nn.Dropout(dropout_rate)\n",
" ])\n",
" prev_dim = hidden_dim\n",
" \n",
" # Final output layer for binary classification\n",
" layers.append(nn.Linear(prev_dim, 1))\n",
" layers.append(nn.Sigmoid())\n",
" \n",
" # Create the model and move to device\n",
" self.model = nn.Sequential(*layers)\n",
" self.to(self.device)\n",
"\n",
" def forward(self, x):\n",
" \"\"\"Forward pass through the network\"\"\"\n",
" # Apply gating mechanism\n",
" x = self.gate(x) * x\n",
" return self.model(x)\n",
"\n",
"class EnsembleClassifier:\n",
" def __init__(self, num_models=5, label_smoothing=0.1):\n",
" self.models = self._create_diverse_models(num_models)\n",
" self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
" self.label_smoothing = label_smoothing\n",
" self.model_weights = None \n",
" \n",
" def _create_diverse_models(self, num_models):\n",
" models = []\n",
" \n",
" # Predefined configurations for consistency across runs\n",
" architectures = [\n",
" {'hidden_layers': [512, 256, 128], 'dropout_rate': 0.2, 'activation': nn.ReLU()},\n",
" {'hidden_layers': [1024, 512], 'dropout_rate': 0.3, 'activation': nn.LeakyReLU()},\n",
" {'hidden_layers': [256, 128, 64], 'dropout_rate': 0.1, 'activation': nn.GELU()},\n",
" {'hidden_layers': [512, 128], 'dropout_rate': 0.25, 'activation': nn.SELU()},\n",
" {'hidden_layers': [256, 128], 'dropout_rate': 0.15, 'activation': nn.Tanh()}\n",
" ]\n",
" \n",
" # Optimizer strategies\n",
" optimizers = [optim.Adam, optim.AdamW, optim.SGD]\n",
" \n",
" for i in range(num_models):\n",
" # Use predefined architectures in a consistent order\n",
" config = architectures[i % len(architectures)]\n",
" optimizer_fn = optimizers[i % len(optimizers)]\n",
" \n",
" model = EnsembleMLPClassifier(\n",
" input_dim=1024,\n",
" hidden_layers=config['hidden_layers'],\n",
" dropout_rate=config['dropout_rate'],\n",
" activation=config['activation']\n",
" )\n",
" \n",
" # Custom weight initialization\n",
" def init_weights(m):\n",
" if isinstance(m, nn.Linear):\n",
" init_methods = [\n",
" nn.init.xavier_uniform_,\n",
" nn.init.kaiming_normal_,\n",
" nn.init.orthogonal_\n",
" ]\n",
" init_method = init_methods[i % len(init_methods)] # Consistent initialization\n",
" init_method(m.weight)\n",
" if m.bias is not None:\n",
" nn.init.zeros_(m.bias)\n",
" \n",
" model.model.apply(init_weights)\n",
" \n",
" # Attach optimizer to model instance for flexibility\n",
" model.optimizer_fn = optimizer_fn\n",
" \n",
" # Add L2 regularization to the model (Weight Decay)\n",
" model.regularization = {\n",
" 'weight_decay': 1e-5 # Example regularization value\n",
" }\n",
" \n",
" models.append(model)\n",
" \n",
" return models\n",
" \n",
" def train(self, train_dataset, batch_size=32, num_epochs=20):\n",
" for model_idx, model in enumerate(tqdm(self.models, desc=\"Training Models\", position=0)):\n",
" print(f\"Starting training for Model {model_idx + 1}/{len(self.models)}\")\n",
" \n",
" # Randomly split 80% for training and 20% for validation\n",
" total_size = len(train_dataset)\n",
" train_size = int(0.8 * total_size)\n",
" val_size = total_size - train_size\n",
" \n",
" train_subset, val_subset = random_split(train_dataset, [train_size, val_size])\n",
" \n",
" # Create data loaders for training and validation\n",
" train_loader = DataLoader(train_subset, batch_size=batch_size, shuffle=True)\n",
" val_loader = DataLoader(val_subset, batch_size=batch_size, shuffle=False)\n",
" \n",
" # Optimizer with learning rate scheduler\n",
" optimizer = optim.AdamW(model.parameters(), lr=1e-3)\n",
" scheduler = optim.lr_scheduler.CosineAnnealingLR(\n",
" optimizer, \n",
" T_max=num_epochs, \n",
" eta_min=1e-5\n",
" )\n",
" \n",
" # Label Smoothing Loss\n",
" criterion = LabelSmoothingBCELoss(smoothing=self.label_smoothing)\n",
" \n",
" # Early stopping\n",
" early_stopping = EarlyStoppingCallback(patience=4, min_delta=0.001)\n",
" \n",
" model.train()\n",
" epoch_progress = tqdm(range(num_epochs), desc=f\"Model {model_idx} Training\", position=1, leave=False)\n",
" \n",
" best_val_loss = float('inf')\n",
" for epoch in epoch_progress:\n",
" total_loss = 0\n",
" \n",
" # Training phase\n",
" for batch in train_loader:\n",
" inputs, labels = batch\n",
" inputs, labels = inputs.to(model.device), labels.to(model.device)\n",
" \n",
" optimizer.zero_grad()\n",
" outputs = model(inputs)\n",
" loss = criterion(outputs, labels.float().unsqueeze(1))\n",
" loss.backward()\n",
" optimizer.step()\n",
" \n",
" total_loss += loss.item()\n",
" avg_train_loss = total_loss / len(train_loader)\n",
" \n",
" # Validation phase\n",
" model.eval()\n",
" val_loss = 0\n",
" with torch.no_grad():\n",
" for val_batch in val_loader:\n",
" val_inputs, val_labels = val_batch\n",
" val_inputs, val_labels = val_inputs.to(model.device), val_labels.to(model.device)\n",
" val_outputs = model(val_inputs)\n",
" val_loss += criterion(val_outputs, val_labels.float().unsqueeze(1)).item()\n",
" \n",
" avg_val_loss = val_loss / len(val_loader)\n",
" epoch_progress.set_postfix({\n",
" 'train_loss': avg_train_loss,\n",
" 'val_loss': avg_val_loss\n",
" })\n",
" \n",
" # Early stopping check\n",
" if early_stopping(avg_val_loss, model):\n",
" if early_stopping.best_model_state:\n",
" model.load_state_dict(early_stopping.best_model_state)\n",
" print(f\"Early stopping triggered for Model {model_idx}\")\n",
" break\n",
" \n",
" # Learning rate adjustment\n",
" scheduler.step()\n",
" \n",
" # Reset to training mode\n",
" model.train()\n",
" \n",
" # Store model's final state after training\n",
" model.eval()\n",
" \n",
" def compute_test_weights(self, test_loader):\n",
" \"\"\"\n",
" Compute model weights based on test accuracy while emphasizing distinctions.\n",
" \"\"\"\n",
" model_accuracies = []\n",
" for model_idx, model in enumerate(self.models):\n",
" correct = 0\n",
" total = 0\n",
" model.eval()\n",
" with torch.no_grad():\n",
" for inputs, labels in test_loader:\n",
" inputs, labels = inputs.to(model.device), labels.to(model.device)\n",
" outputs = model(inputs)\n",
" preds = (outputs > 0.5).float()\n",
" correct += (preds == labels).sum().item()\n",
" total += labels.size(0)\n",
" accuracy = correct / total\n",
" model_accuracies.append(accuracy)\n",
" \n",
" # Apply a power transformation for distinction\n",
" accuracies = np.array(model_accuracies)\n",
" print(f\"Raw model accuracies: {accuracies}\")\n",
" \n",
" # Use power scaling to exaggerate differences (e.g., square the accuracies)\n",
" power_scaling_factor = 2 # Choose 2 for squaring, can experiment with higher values\n",
" scaled_accuracies = accuracies ** power_scaling_factor\n",
" \n",
" # Smooth the accuracies slightly to avoid over-reliance on any single model\n",
" smoothed_accuracies = scaled_accuracies * (1 - 0.1) + 0.1 * np.mean(scaled_accuracies)\n",
" \n",
" # Normalize weights so they sum to 1\n",
" weights = smoothed_accuracies / smoothed_accuracies.sum()\n",
" \n",
" # Store model weights\n",
" self.model_weights = torch.tensor(weights, dtype=torch.float32).to(self.device)\n",
" print(f\"Model weights after scaling: {self.model_weights}\")\n",
"\n",
"\n",
" def predict(self, test_loader, confidence_threshold=0.5, return_raw_scores=True):\n",
" \"\"\"\n",
" Prediction with confidence-weighted voting, optionally returning raw scores.\n",
" \"\"\"\n",
" if self.model_weights is None:\n",
" raise ValueError(\"Model weights not computed. Call compute_test_weights first.\")\n",
" \n",
" all_predictions = []\n",
" for model_idx, model in enumerate(self.models):\n",
" model.eval()\n",
" model_preds = []\n",
" with torch.no_grad():\n",
" for batch in test_loader:\n",
" inputs, _ = batch\n",
" inputs = inputs.to(model.device)\n",
" outputs = model(inputs)\n",
" model_preds.append(outputs)\n",
" \n",
" # Concatenate predictions for this model\n",
" all_predictions.append(torch.cat(model_preds))\n",
" \n",
" # Stack predictions and compute weighted average\n",
" stacked_preds = torch.stack(all_predictions, dim=1).squeeze(-1)\n",
" weighted_preds = (stacked_preds * self.model_weights.view(1, -1)).sum(dim=1)\n",
" \n",
" # Final prediction with thresholding\n",
" final_preds = (weighted_preds > confidence_threshold).float()\n",
" \n",
" # Optionally return raw probabilities for debugging\n",
" if return_raw_scores:\n",
" return final_preds, weighted_preds.cpu().numpy()\n",
" \n",
" return final_preds\n",
"\n",
"\n",
" def save_models(self, save_dir='ensemble_models/model_test_4'):\n",
" \"\"\"\n",
" Save ensemble model weights and model weights with progress tracking\n",
" \"\"\"\n",
" os.makedirs(save_dir, exist_ok=True)\n",
"\n",
" save_data = {\n",
" 'models': {},\n",
" 'model_weights': self.model_weights.cpu().numpy() if self.model_weights is not None else None\n",
" }\n",
"\n",
" for i, model in tqdm(enumerate(self.models), desc=\"Saving Models\", total=len(self.models)):\n",
" save_data['models'][i] = model.state_dict()\n",
"\n",
" torch.save(save_data, os.path.join(save_dir, 'ensemble_checkpoint.pth'))\n",
"\n",
" def load_models(self, save_dir='ensemble_models/model_test_4'):\n",
" \"\"\"\n",
" Load ensemble model weights and model weights with progress tracking\n",
" \"\"\"\n",
" checkpoint_path = os.path.join(save_dir, 'ensemble_checkpoint.pth')\n",
"\n",
" save_data = torch.load(checkpoint_path)\n",
"\n",
" for i, model in tqdm(enumerate(self.models), desc=\"Loading Models\", total=len(self.models)):\n",
" model.load_state_dict(save_data['models'][i])\n",
" model.eval() # Set to evaluation mode\n",
"\n",
" if save_data['model_weights'] is not None:\n",
" self.model_weights = torch.tensor(save_data['model_weights'], dtype=torch.float32).to(self.device)\n",
" \n",
" def evaluate(self, test_loader):\n",
" \"\"\"\n",
" Evaluate ensemble performance with weighted voting, supporting both CPU and GPU.\n",
" \"\"\"\n",
" # Collect ground truth labels\n",
" all_labels = torch.cat([labels for _, labels in test_loader], dim=0).to(self.device)\n",
" \n",
" # Get predictions for the entire test set\n",
" test_preds = self.predict(test_loader, return_raw_scores=True)\n",
" \n",
" # Ensure predictions and labels are on the same device\n",
" all_labels = all_labels.cpu().numpy().ravel() # Flatten to 1D\n",
" test_preds, raw_probs = test_preds\n",
" test_preds = test_preds.cpu().numpy().ravel() # Flatten to 1D\n",
" \n",
" # Print debug information\n",
" # print(\"Ground truth labels (all_labels):\", all_labels)\n",
" # print(\"Predicted classes (test_preds):\", test_preds)\n",
" # print(\"Raw probabilities (raw_probs):\", raw_probs) \n",
" \n",
" # Calculate metrics\n",
" accuracy = np.mean(test_preds == all_labels)\n",
" precision = precision_score(all_labels, test_preds, zero_division=0)\n",
" recall = recall_score(all_labels, test_preds, zero_division=0)\n",
" \n",
" return {\n",
" \"accuracy\": accuracy,\n",
" \"precision\": precision,\n",
" \"recall\": recall\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "a95bb0eb-48ba-4c46-9cc5-4f6a1ee19dee",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Looking in indexes: https://pypi.org/simple, https://pypi.ngc.nvidia.com\n",
"Requirement already satisfied: FlagEmbedding in /opt/conda/lib/python3.11/site-packages (1.3.3)\n",
"Requirement already satisfied: torch>=1.6.0 in /opt/conda/lib/python3.11/site-packages (from FlagEmbedding) (2.2.2+cu121)\n",
"Requirement already satisfied: transformers==4.44.2 in /opt/conda/lib/python3.11/site-packages (from FlagEmbedding) (4.44.2)\n",
"Requirement already satisfied: datasets==2.19.0 in /opt/conda/lib/python3.11/site-packages (from FlagEmbedding) (2.19.0)\n",
"Requirement already satisfied: accelerate>=0.20.1 in /opt/conda/lib/python3.11/site-packages (from FlagEmbedding) (1.2.0)\n",
"Requirement already satisfied: sentence-transformers in /opt/conda/lib/python3.11/site-packages (from FlagEmbedding) (3.3.1)\n",
"Requirement already satisfied: peft in /opt/conda/lib/python3.11/site-packages (from FlagEmbedding) (0.14.0)\n",
"Requirement already satisfied: ir-datasets in /opt/conda/lib/python3.11/site-packages (from FlagEmbedding) (0.5.9)\n",
"Requirement already satisfied: sentencepiece in /opt/conda/lib/python3.11/site-packages (from FlagEmbedding) (0.2.0)\n",
"Requirement already satisfied: protobuf in /opt/conda/lib/python3.11/site-packages (from FlagEmbedding) (4.25.3)\n",
"Requirement already satisfied: filelock in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (3.9.0)\n",
"Requirement already satisfied: numpy>=1.17 in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (1.26.4)\n",
"Requirement already satisfied: pyarrow>=12.0.0 in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (15.0.2)\n",
"Requirement already satisfied: pyarrow-hotfix in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (0.6)\n",
"Requirement already satisfied: dill<0.3.9,>=0.3.0 in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (0.3.8)\n",
"Requirement already satisfied: pandas in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (2.2.2)\n",
"Requirement already satisfied: requests>=2.19.0 in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (2.31.0)\n",
"Requirement already satisfied: tqdm>=4.62.1 in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (4.66.2)\n",
"Requirement already satisfied: xxhash in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (3.5.0)\n",
"Requirement already satisfied: multiprocess in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (0.70.16)\n",
"Requirement already satisfied: fsspec<=2024.3.1,>=2023.1.0 in /opt/conda/lib/python3.11/site-packages (from fsspec[http]<=2024.3.1,>=2023.1.0->datasets==2.19.0->FlagEmbedding) (2024.3.1)\n",
"Requirement already satisfied: aiohttp in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (3.11.10)\n",
"Requirement already satisfied: huggingface-hub>=0.21.2 in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (0.26.5)\n",
"Requirement already satisfied: packaging in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (24.0)\n",
"Requirement already satisfied: pyyaml>=5.1 in /opt/conda/lib/python3.11/site-packages (from datasets==2.19.0->FlagEmbedding) (6.0.1)\n",
"Requirement already satisfied: regex!=2019.12.17 in /opt/conda/lib/python3.11/site-packages (from transformers==4.44.2->FlagEmbedding) (2024.11.6)\n",
"Requirement already satisfied: safetensors>=0.4.1 in /opt/conda/lib/python3.11/site-packages (from transformers==4.44.2->FlagEmbedding) (0.4.5)\n",
"Requirement already satisfied: tokenizers<0.20,>=0.19 in /opt/conda/lib/python3.11/site-packages (from transformers==4.44.2->FlagEmbedding) (0.19.1)\n",
"Requirement already satisfied: psutil in /opt/conda/lib/python3.11/site-packages (from accelerate>=0.20.1->FlagEmbedding) (5.9.8)\n",
"Requirement already satisfied: typing-extensions>=4.8.0 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (4.11.0)\n",
"Requirement already satisfied: sympy in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (1.12)\n",
"Requirement already satisfied: networkx in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (3.3)\n",
"Requirement already satisfied: jinja2 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (3.1.3)\n",
"Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (12.1.105)\n",
"Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (12.1.105)\n",
"Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (12.1.105)\n",
"Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (8.9.2.26)\n",
"Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (12.1.3.1)\n",
"Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (11.0.2.54)\n",
"Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (10.3.2.106)\n",
"Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (11.4.5.107)\n",
"Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (12.1.0.106)\n",
"Requirement already satisfied: nvidia-nccl-cu12==2.19.3 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (2.19.3)\n",
"Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (12.1.105)\n",
"Requirement already satisfied: triton==2.2.0 in /opt/conda/lib/python3.11/site-packages (from torch>=1.6.0->FlagEmbedding) (2.2.0)\n",
"Requirement already satisfied: nvidia-nvjitlink-cu12 in /opt/conda/lib/python3.11/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.6.0->FlagEmbedding) (12.4.127)\n",
"Requirement already satisfied: beautifulsoup4>=4.4.1 in /opt/conda/lib/python3.11/site-packages (from ir-datasets->FlagEmbedding) (4.12.3)\n",
"Requirement already satisfied: inscriptis>=2.2.0 in /opt/conda/lib/python3.11/site-packages (from ir-datasets->FlagEmbedding) (2.5.0)\n",
"Requirement already satisfied: lxml>=4.5.2 in /opt/conda/lib/python3.11/site-packages (from ir-datasets->FlagEmbedding) (5.3.0)\n",
"Requirement already satisfied: trec-car-tools>=2.5.4 in /opt/conda/lib/python3.11/site-packages (from ir-datasets->FlagEmbedding) (2.6)\n",
"Requirement already satisfied: lz4>=3.1.10 in /opt/conda/lib/python3.11/site-packages (from ir-datasets->FlagEmbedding) (4.3.3)\n",
"Requirement already satisfied: warc3-wet>=0.2.3 in /opt/conda/lib/python3.11/site-packages (from ir-datasets->FlagEmbedding) (0.2.5)\n",
"Requirement already satisfied: warc3-wet-clueweb09>=0.2.5 in /opt/conda/lib/python3.11/site-packages (from ir-datasets->FlagEmbedding) (0.2.5)\n",
"Requirement already satisfied: zlib-state>=0.1.3 in /opt/conda/lib/python3.11/site-packages (from ir-datasets->FlagEmbedding) (0.1.9)\n",
"Requirement already satisfied: ijson>=3.1.3 in /opt/conda/lib/python3.11/site-packages (from ir-datasets->FlagEmbedding) (3.3.0)\n",
"Requirement already satisfied: unlzw3>=0.2.1 in /opt/conda/lib/python3.11/site-packages (from ir-datasets->FlagEmbedding) (0.2.2)\n",
"Requirement already satisfied: scikit-learn in /opt/conda/lib/python3.11/site-packages (from sentence-transformers->FlagEmbedding) (1.4.2)\n",
"Requirement already satisfied: scipy in /opt/conda/lib/python3.11/site-packages (from sentence-transformers->FlagEmbedding) (1.13.0)\n",
"Requirement already satisfied: Pillow in /opt/conda/lib/python3.11/site-packages (from sentence-transformers->FlagEmbedding) (10.3.0)\n",
"Requirement already satisfied: soupsieve>1.2 in /opt/conda/lib/python3.11/site-packages (from beautifulsoup4>=4.4.1->ir-datasets->FlagEmbedding) (2.5)\n",
"Requirement already satisfied: aiohappyeyeballs>=2.3.0 in /opt/conda/lib/python3.11/site-packages (from aiohttp->datasets==2.19.0->FlagEmbedding) (2.4.4)\n",
"Requirement already satisfied: aiosignal>=1.1.2 in /opt/conda/lib/python3.11/site-packages (from aiohttp->datasets==2.19.0->FlagEmbedding) (1.3.2)\n",
"Requirement already satisfied: attrs>=17.3.0 in /opt/conda/lib/python3.11/site-packages (from aiohttp->datasets==2.19.0->FlagEmbedding) (23.2.0)\n",
"Requirement already satisfied: frozenlist>=1.1.1 in /opt/conda/lib/python3.11/site-packages (from aiohttp->datasets==2.19.0->FlagEmbedding) (1.5.0)\n",
"Requirement already satisfied: multidict<7.0,>=4.5 in /opt/conda/lib/python3.11/site-packages (from aiohttp->datasets==2.19.0->FlagEmbedding) (6.1.0)\n",
"Requirement already satisfied: propcache>=0.2.0 in /opt/conda/lib/python3.11/site-packages (from aiohttp->datasets==2.19.0->FlagEmbedding) (0.2.1)\n",
"Requirement already satisfied: yarl<2.0,>=1.17.0 in /opt/conda/lib/python3.11/site-packages (from aiohttp->datasets==2.19.0->FlagEmbedding) (1.18.3)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /opt/conda/lib/python3.11/site-packages (from requests>=2.19.0->datasets==2.19.0->FlagEmbedding) (3.3.2)\n",
"Requirement already satisfied: idna<4,>=2.5 in /opt/conda/lib/python3.11/site-packages (from requests>=2.19.0->datasets==2.19.0->FlagEmbedding) (3.7)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /opt/conda/lib/python3.11/site-packages (from requests>=2.19.0->datasets==2.19.0->FlagEmbedding) (2.2.1)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.11/site-packages (from requests>=2.19.0->datasets==2.19.0->FlagEmbedding) (2024.2.2)\n",
"Requirement already satisfied: cbor>=1.0.0 in /opt/conda/lib/python3.11/site-packages (from trec-car-tools>=2.5.4->ir-datasets->FlagEmbedding) (1.0.0)\n",
"Requirement already satisfied: MarkupSafe>=2.0 in /opt/conda/lib/python3.11/site-packages (from jinja2->torch>=1.6.0->FlagEmbedding) (2.1.5)\n",
"Requirement already satisfied: python-dateutil>=2.8.2 in /opt/conda/lib/python3.11/site-packages (from pandas->datasets==2.19.0->FlagEmbedding) (2.9.0)\n",
"Requirement already satisfied: pytz>=2020.1 in /opt/conda/lib/python3.11/site-packages (from pandas->datasets==2.19.0->FlagEmbedding) (2024.1)\n",
"Requirement already satisfied: tzdata>=2022.7 in /opt/conda/lib/python3.11/site-packages (from pandas->datasets==2.19.0->FlagEmbedding) (2024.1)\n",
"Requirement already satisfied: joblib>=1.2.0 in /opt/conda/lib/python3.11/site-packages (from scikit-learn->sentence-transformers->FlagEmbedding) (1.4.0)\n",
"Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/lib/python3.11/site-packages (from scikit-learn->sentence-transformers->FlagEmbedding) (3.4.0)\n",
"Requirement already satisfied: mpmath>=0.19 in /opt/conda/lib/python3.11/site-packages (from sympy->torch>=1.6.0->FlagEmbedding) (1.3.0)\n",
"Requirement already satisfied: six>=1.5 in /opt/conda/lib/python3.11/site-packages (from python-dateutil>=2.8.2->pandas->datasets==2.19.0->FlagEmbedding) (1.16.0)\n",
"\u001b[33mWARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It is recommended to use a virtual environment instead: https://pip.pypa.io/warnings/venv\u001b[0m\u001b[33m\n",
"\u001b[0m"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a24dee20be054f138b75c100ab2e6a36",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Fetching 30 files: 0%| | 0/30 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Encoding titles...\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"You're using a XLMRobertaTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Processed 20/20 titles\n"
]
}
],
"source": [
"!pip install FlagEmbedding\n",
"from FlagEmbedding import BGEM3FlagModel\n",
"model = BGEM3FlagModel('BAAI/bge-m3')\n",
"\n",
"# Remember to change the test path\n",
"test_data_path = \"/home/jovyan/work/test_data_random_subset.csv\"\n",
"\n",
"data = data = pd.read_csv(test_data_path)\n",
"titles = data['title'].tolist()\n",
"labels = data['labels'].tolist()\n",
"\n",
"batch_size = 32\n",
"embeddings = []\n",
"\n",
"print('Encoding titles...')\n",
"for i in range(0, len(titles), batch_size):\n",
" batch = titles[i:i + batch_size]\n",
" batch_embeddings = model.encode(batch, batch_size=batch_size, max_length=512)['dense_vecs']\n",
" embeddings.extend(batch_embeddings)\n",
" print(f\"Processed {i + len(batch)}/{len(titles)} titles\")\n",
"\n",
"embeddings_df = pd.DataFrame(embeddings)\n",
"embeddings_df['label'] = labels\n",
"\n",
"# Convert embeddings and labels to PyTorch tensors\n",
"X_test = torch.FloatTensor(embeddings_df.iloc[:, :-1].values) # Features\n",
"y_test = torch.FloatTensor(embeddings_df['label'].values).view(-1, 1) # Labels\n",
"\n",
"# Create DataLoader for the test dataset\n",
"test_dataset = TensorDataset(X_test, y_test)\n",
"test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "c6bcf956-4e26-4278-a6fe-9955322cf06a",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading Models: 100%|ββββββββββ| 5/5 [00:00<00:00, 1799.05it/s]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'accuracy': 0.9, 'precision': 0.9, 'recall': 0.9}\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"from sklearn.metrics import precision_score, recall_score\n",
"ensemble = EnsembleClassifier(5) \n",
"\n",
"# Load saved model weights\n",
"# Be sure to change to the actual path\n",
"ensemble.load_models(save_dir='/home/jovyan/work/ensemble_models/model_test_4')\n",
"\n",
"# Evaluate the ensemble\n",
"results = ensemble.evaluate(test_loader)\n",
"print(results)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "77da0a63-cf76-4cbb-8b48-da115e124946",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|