File size: 14,326 Bytes
e148f23 cff2c0d e148f23 a7e76de c0d8614 a7e76de e148f23 d7738b8 e148f23 2432df7 f5ee113 2432df7 a26dbaa 2432df7 a26dbaa 2432df7 a26dbaa 2432df7 23877fb a26dbaa 2432df7 a26dbaa 2432df7 23877fb a26dbaa 2432df7 a26dbaa 2432df7 a26dbaa 2432df7 a26dbaa 2432df7 23877fb a26dbaa 2432df7 23877fb a26dbaa 23877fb 2432df7 a26dbaa 2432df7 cff2c0d 23877fb 2432df7 cff2c0d 2432df7 cff2c0d 2432df7 cff2c0d 2432df7 cff2c0d 2432df7 a26dbaa cff2c0d a26dbaa cff2c0d 21fc7fc cff2c0d a26dbaa cff2c0d a26dbaa cff2c0d a26dbaa cff2c0d a26dbaa 2432df7 cff2c0d 23877fb cff2c0d 2432df7 21fc7fc cff2c0d 2432df7 e148f23 21fc7fc e148f23 c0d8614 e148f23 a7e76de c0d8614 29ed3a1 c0d8614 1635cfc 29ed3a1 c0d8614 a7e76de 21fc7fc a7e76de c0d8614 a7e76de c0d8614 e148f23 03d3960 c0d8614 3c7e2f4 c0d8614 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
---
language:
- vi
metrics:
- accuracy
- f1
tags:
- sentiment-analysis
- social-listening
library_name: transformers
---
# 5CD-ViSoBERT for Vietnamese Sentiment Analysis
<b>YOU ARE TOO BORED AND TIRED OF HAVING TO BUILD A 🇻🇳 VIETNAMESE SENTIMENT ANALYSIS MODEL OVER AND OVER AGAIN?</b>
<b> BOOM! 🤯 NO WORRIES, WE'RE HERE FOR YOU =)) 🔥!</b>
This model is based on our pretrained [5CD-AI/visobert-14gb-corpus](https://huggingface.co/5CD-AI/visobert-14gb-corpus), which has been continuously trained on a 14GB dataset of Vietnamese social content. So it can perform well with many comment sentiments accompanied by emojis 😂👍💬🔥
Our model is fine-tuned on <b>120K Vietnamese sentiment analysis datasets </b>, including comments and reviews from e-commerce platforms, social media, and forums. Our model has been trained on a diverse range of datasets: SA-VLSP2016, AIVIVN-2019, UIT-VSFC, UIT-VSMEC, UIT-ViCTSD, UIT-ViOCD, UIT-ViSFD, Vi-amazon-reviews, Tiki-reviews.
The model will give softmax outputs for three labels.
<b>Labels</b>:
```
0 -> Negative
1 -> Positive
2 -> Neutral
```
## Dataset
Our training dataset. Because of label ambiguity, with UIT-VSMEC, UIT-ViCTSD, VOZ-HSD, we re-label the dataset with Gemini 1.5 Flash API follow the 3 labels. The specific number of samples for each dataset can be seen below:
<table border="2">
<tr align="center">
<th rowspan="2">Dataset</th>
<th colspan="3">Train</th>
<th colspan="3">Test</th>
<th colspan="3">Val</th>
</tr>
<tr align="center">
<th>Neg</th>
<th>Pos</th>
<th>Neu</th>
<th>Neg</th>
<th>Pos</th>
<th>Neu</th>
<th>Neg</th>
<th>Pos</th>
<th>Neu</th>
</tr>
<tr align="center">
<td align="left">All-filtered</td>
<td>62708</td>
<td>41400</td>
<td>11593</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5079</td>
<td>3724</td>
<td>638</td>
</tr>
<tr align="center">
<td align="left">SA-VLSP2016</td>
<td>4759</td>
<td>4798</td>
<td>4459</td>
<td>1180</td>
<td>1190</td>
<td>1114</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr align="center">
<td align="left">UIT-VSFC </td>
<td>5325</td>
<td>5643</td>
<td>458</td>
<td>1409</td>
<td>1590</td>
<td>167</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr align="center">
<td align="left">UIT-VSMEC (Gemini-label)</td>
<td>3219</td>
<td>1665</td>
<td>594</td>
<td>458</td>
<td>407</td>
<td>210</td>
<td>71</td>
<td>388</td>
<td>239</td>
<td>52</td>
</tr>
<tr align="center">
<td align="left">AIVIVN-2019</td>
<td>6776</td>
<td>7879</td>
<td>-</td>
<td>4770</td>
<td>5168</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr align="center">
<td align="left">UIT-ViCTSD (Gemini-label)</td>
<td>3370</td>
<td>2615</td>
<td>933</td>
<td>3370</td>
<td>2615</td>
<td>933</td>
<td>3370</td>
<td>2615</td>
<td>933</td>
</tr>
<tr align="center">
<td align="left">UIT-ViHSD</td>
<td>4162</td>
<td>19886</td>
<td>-</td>
<td>1132</td>
<td>5548</td>
<td>-</td>
<td>482</td>
<td>2190</td>
<td>-</td>
</tr>
<tr align="center">
<td align="left">UIT-ViSFD</td>
<td>2850</td>
<td>3670</td>
<td>1266</td>
<td>827</td>
<td>1000</td>
<td>397</td>
<td>409</td>
<td>515</td>
<td>188</td>
</tr>
<tr align="center">
<td align="left">UIT-ViOCD</td>
<td>2292</td>
<td>2095</td>
<td>-</td>
<td>279</td>
<td>270</td>
<td>-</td>
<td>283</td>
<td>265</td>
<td>-</td>
</tr>
<tr align="center">
<td align="left">Tiki-reviews</td>
<td>20093</td>
<td>6669</td>
<td>4698</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr align="center">
<td align="left">VOZ-HSD (Gemini-label)</td>
<td>2676</td>
<td>1213</td>
<td>1071</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr align="center">
<td align="left">Vietnamese-amazon-polarity</td>
<td>2559</td>
<td>2441</td>
<td>-</td>
<td>1017</td>
<td>983</td>
<td>-</td>
<td>523</td>
<td>477</td>
<td>-</td>
</tr>
</table>
## Evaluation
<table>
<tr align="center">
<td rowspan=2><b>Model</td>
<td colspan=4><b>SA-VLSP2016</td>
<td colspan=4><b>AIVIVN-2019</td>
<td colspan=4><b>UIT-VSFC</td>
<td colspan=4><b>UIT-VSMEC (Gemini-label)</td>
<td colspan=4><b>UIT-ViCTSD (Gemini-label)</td>
</tr>
<tr align="center">
<td><b>Acc</td>
<td><b>Prec</td>
<td><b>Recall</td>
<td><b>WF1</td>
<td><b>Acc</td>
<td><b>Prec</td>
<td><b>Recall</td>
<td><b>WF1</td>
<td><b>Acc</td>
<td><b>Prec</td>
<td><b>Recall</td>
<td><b>WF1</td>
<td><b>Acc</td>
<td><b>Prec</td>
<td><b>Recall</td>
<td><b>WF1</td>
<td><b>Acc</td>
<td><b>Prec</td>
<td><b>Recall</td>
<td><b>WF1</td>
</tr>
<tr align="center">
<tr align="center">
<td align="left">wonrax/phobert-base-vietnamese-sentiment</td>
<td>61.65</td>
<td>63.95</td>
<td>61.65</td>
<td>60.01</td>
<td>84.87</td>
<td>95.12</td>
<td>84.87</td>
<td>89.47</td>
<td>76.37</td>
<td>88.10</td>
<td>76.37</td>
<td>79.53</td>
<td>65.41</td>
<td>74.36</td>
<td>65.41</td>
<td>68.33</td>
<td>62.34</td>
<td>73.08</td>
<td>62.34</td>
<td>65.54</td>
</tr>
<tr align="center">
<td align="left"><b>5CD-AI/Vietnamese-Sentiment-visobert</td>
<td><b>88.06</td>
<td><b>88.16</td>
<td><b>88.06</td>
<td><b>88.06</td>
<td><b>99.62</td>
<td><b>99.65</td>
<td><b>99.62</td>
<td><b>99.64</td>
<td><b>94.65</td>
<td><b>93.30</td>
<td><b>93.65</td>
<td><b>93.38</td>
<td><b>77.91</td>
<td><b>77.21</td>
<td><b>77.91</td>
<td><b>77.46</td>
<td><b>75.10</td>
<td><b>74.59</td>
<td><b>75.10</td>
<td><b>74.79</td>
</tr>
</div>
</table>
<table>
<tr align="center">
<td rowspan=2><b>Model</td>
<td colspan=4><b>UIT-ViOCD</td>
<td colspan=4><b>UIT-ViSFD</td>
<td colspan=4><b>Vi-amazon-polar</td>
</tr>
<tr align="center">
<td><b>Acc</td>
<td><b>Prec</td>
<td><b>Recall</td>
<td><b>WF1</td>
<td><b>Acc</td>
<td><b>Prec</td>
<td><b>Recall</td>
<td><b>WF1</td>
<td><b>Acc</td>
<td><b>Prec</td>
<td><b>Recall</td>
<td><b>WF1</td>
</tr>
<tr align="center">
<tr align="center">
<td align="left">wonrax/phobert-base-vietnamese-sentiment</td>
<td>74.68</td>
<td>87.14</td>
<td>74.68</td>
<td>78.13</td>
<td>67.90</td>
<td>67.95</td>
<td>67.90</td>
<td>66.98</td>
<td>61.40</td>
<td>76.53</td>
<td>61.40</td>
<td>65.70</td>
</tr>
<tr align="center">
<td align="left"><b>5CD-AI/Vietnamese-Sentiment-visobert</td>
<td><b>94.35</td>
<td><b>94.74</td>
<td><b>94.35</td>
<td><b>94.53</td>
<td><b>93.26</td>
<td><b>93.20</td>
<td><b>93.26</td>
<td><b>93.21</td>
<td><b>89.90</td>
<td><b>90.13</td>
<td><b>89.90</td>
<td><b>90.01</td>
</tr>
</div>
</table>
## Usage (HuggingFace Transformers)
Install `transformers` package:
pip install transformers
### Pipeline
```python
from transformers import pipeline
model_path = '5CD-AI/Vietnamese-Sentiment-visobert'
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("Miếng dán dễ xước , ko khít với dt 11 prm")
```
Output:
```
[{'label': 'NEG', 'score': 0.998149037361145}]
```
### Other examples
```
Sentence: Đây là mô hình rất hay, đáp ứng tốt nhu cầu của nhiều doanh nghiệp Việt.
### Sentiment score ####
1) POS: 0.9995
2) NEG: 0.0003
3) NEU: 0.0003
```
```
Sentence: Qua vụ này thì uy tín của Trump càng lớn hơn nữa. Nhất là với hình ảnh đầy tính biểu tượng như trên.
### Sentiment score ####
1) POS: 0.9965
2) NEG: 0.0029
3) NEU: 0.0005
```
```
Sentence: Bãi đi nó lừa lắm, mình có bỏ vào ví tt này hơn 20 triệu. Lãi tính ra cả tháng dc bao nhiêu mình không nhớ, nhưng khi rút về ngân hàng nó trừ phí giao dịch hơn mịa nó tiền lãi.
Nên từ đó cạch luôn
### Sentiment score ####
1) NEG: 0.999
2) POS: 0.0008
3) NEU: 0.0002
```
```
Sentence: Vậy chắc tùy nơi rồi :D
Chỗ mình chuộng hàng masan lắm, mì gói thì không hẳn (có kokomi cũng bán chạy), con gia vị thì gần như toàn đồ masan.
### Sentiment score ####
1) NEU: 0.9824
2) NEG: 0.0157
3) POS: 0.0019
```
```
Sentence: hội sở ở tech trần duy hưng có 1 thằng là thằng Đạt hói. Làm lâu lên lão làng, đc làm lãnh đạo nhưng chả có cái việc mẹ gì chỉ được ngồi xếp ca cho nhân viên. xấu tính bẩn tính sân si nhất cái Tech*. Nghiệp vụ thì ậm ờ đ*o biết gì, chỉ suốt ngày nhận lương đi săm soi nhân viên là nhanh =))) đàn ông đàn ang chả khác mẹ gì mấy con mụ ngoài chợ, nó hành từng nhân viên ra bã, trừ đứa nào nịnh nọt ve vãn với nó. Lậy luôn đhs 1 thằng như thế lại được lên làm lead ở Tech.
### Sentiment score ####
1) NEG: 0.9994
2) POS: 0.0006
3) NEU: 0.0001
```
```
Sentence: Cà phê dở ko ngon, ai chưa mua thì đừng mua
### Sentiment score ####
1) NEG: 0.9994
2) POS: 0.0005
3) NEU: 0.0001
```
```
Sentence: Cũng tạm. Ko gì đb
### Sentiment score ####
1) NEU: 0.9387
2) NEG: 0.0471
3) POS: 0.0142
```
```
Sentence: thui báo ơi.nhà từ trong trứng ra mà sao sáng đc.
### Sentiment score ####
1) NEG: 0.988
2) POS: 0.0119
3) NEU: 0.0001
```
```
Sentence: Dm mới kéo cái tuột luôn cái kính cường lực🙂
R phải cầm cái kính tự dán🙂 để lâu quá nó dính hai cục bụi lên nữa chứ má bực thiệt chứ
Hình như tại hai cái cục nam châm nó xúc ra 😑
### Sentiment score ####
1) NEG: 0.9928
2) POS: 0.0071
3) NEU: 0.0001
```
```
Sentence: Mấy cái khóa kiểu này ông lên youtube tự học còn ngon hơn.
### Sentiment score ####
1) NEG: 0.9896
2) POS: 0.008
3) NEU: 0.0024
```
### Full classification
```python
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
import torch
#### Load model
model_path = '5CD-AI/Vietnamese-Sentiment-visobert'
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path).to("cuda")
sentence = 'Cũng giống mấy khoá Youtube học cũng được'
print('Sentence: ', sentence)
input_ids = torch.tensor([tokenizer.encode(sentence)]).to("cuda")
with torch.no_grad():
out = model(input_ids)
scores = out.logits.softmax(dim=-1).cpu().numpy()[0]
# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
print("### Sentiment score ####")
for i in range(scores.shape[0]):
l = config.id2label[ranking[i]]
s = scores[ranking[i]]
print(f"{i+1}) {l}: {np.round(float(s), 4)}")
```
Output:
```
Sentence: Cũng giống mấy khoá Youtube học cũng được
### Sentiment score ####
1) NEU: 0.8928
2) NEG: 0.0586
3) POS: 0.0486
```
## Fine-tune Configuration
We fine-tune `5CD-AI/visobert-14gb-corpus` on downstream tasks with `transformers` library with the following configuration:
- seed: 42
- gradient_accumulation_steps: 1
- weight_decay: 0.01
- optimizer: AdamW with betas=(0.9, 0.999) and epsilon=1e-08
- training_epochs: 5
- model_max_length: 256
- learning_rate: 2e-5
- metric_for_best_model: wf1
- strategy: epoch
## References
[1] [PhoBERT: Pre-trained language models for Vietnamese](https://aclanthology.org/2020.findings-emnlp.92/)
[2] [ViSoBERT: A Pre-Trained Language Model for Vietnamese Social Media Text Processing](https://aclanthology.org/2023.emnlp-main.315/)
[3] [The Amazon Polarity dataset](https://paperswithcode.com/dataset/amazon-polarity-1)
## Disclaimer
Disclaimer: The data contains actual comments on social networks that might be construed as abusive, offensive, or obscene. Additionally, the examples and dataset may contain negative information about any business. We only collect this data and do not bear any legal responsibility. |