File size: 14,326 Bytes
e148f23
 
 
 
 
 
 
 
 
cff2c0d
e148f23
 
 
 
a7e76de
c0d8614
 
 
a7e76de
e148f23
d7738b8
e148f23
 
 
 
 
 
 
 
 
 
2432df7
 
f5ee113
2432df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a26dbaa
 
 
 
 
 
 
 
 
 
2432df7
 
 
a26dbaa
 
 
 
 
 
 
 
 
2432df7
 
 
a26dbaa
 
 
 
 
 
 
 
 
2432df7
 
23877fb
a26dbaa
 
 
 
 
 
 
 
 
 
2432df7
 
 
a26dbaa
 
 
 
 
 
 
 
 
2432df7
 
23877fb
a26dbaa
 
 
 
 
 
 
 
 
2432df7
 
 
a26dbaa
 
 
 
 
 
 
 
 
2432df7
 
 
a26dbaa
 
 
 
 
 
 
 
 
2432df7
 
 
a26dbaa
 
 
 
 
 
 
 
 
2432df7
 
23877fb
a26dbaa
 
 
 
 
 
 
 
 
2432df7
 
23877fb
a26dbaa
 
 
23877fb
 
 
 
 
 
2432df7
 
 
a26dbaa
 
 
 
 
 
 
 
 
2432df7
 
 
 
 
 
 
cff2c0d
 
 
23877fb
 
2432df7
 
 
cff2c0d
 
2432df7
 
cff2c0d
 
2432df7
 
cff2c0d
 
2432df7
 
cff2c0d
 
2432df7
a26dbaa
cff2c0d
 
a26dbaa
cff2c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21fc7fc
cff2c0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a26dbaa
cff2c0d
 
a26dbaa
 
cff2c0d
 
a26dbaa
 
cff2c0d
 
a26dbaa
2432df7
 
 
cff2c0d
23877fb
cff2c0d
 
 
 
 
 
 
 
 
 
 
2432df7
 
21fc7fc
cff2c0d
 
 
 
 
 
 
 
 
 
 
 
2432df7
 
 
 
 
e148f23
 
 
 
 
 
 
 
 
 
21fc7fc
e148f23
 
 
c0d8614
e148f23
 
 
 
a7e76de
c0d8614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29ed3a1
 
 
 
 
 
 
 
 
c0d8614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1635cfc
29ed3a1
c0d8614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7e76de
 
 
 
 
 
 
 
 
 
21fc7fc
a7e76de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0d8614
a7e76de
c0d8614
 
e148f23
 
 
 
 
 
 
 
 
 
03d3960
 
 
 
 
 
 
 
c0d8614
3c7e2f4
c0d8614
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
---
language:
- vi
metrics:
- accuracy
- f1
tags:
- sentiment-analysis
- social-listening
library_name: transformers
---

# 5CD-ViSoBERT for Vietnamese Sentiment Analysis

<b>YOU ARE TOO BORED AND TIRED OF HAVING TO BUILD A 🇻🇳 VIETNAMESE SENTIMENT ANALYSIS MODEL OVER AND OVER AGAIN?</b>

<b> BOOM! 🤯 NO WORRIES, WE'RE HERE FOR YOU =)) 🔥!</b>

This model is based on our pretrained [5CD-AI/visobert-14gb-corpus](https://huggingface.co/5CD-AI/visobert-14gb-corpus), which has been continuously trained on a 14GB dataset of Vietnamese social content. So it can perform well with many comment sentiments accompanied by emojis 😂👍💬🔥

Our model is fine-tuned on <b>120K Vietnamese sentiment analysis datasets </b>, including comments and reviews from e-commerce platforms, social media, and forums. Our model has been trained on a diverse range of datasets: SA-VLSP2016, AIVIVN-2019, UIT-VSFC, UIT-VSMEC, UIT-ViCTSD, UIT-ViOCD, UIT-ViSFD, Vi-amazon-reviews, Tiki-reviews.

The model will give softmax outputs for three labels.

<b>Labels</b>:

```
0 -> Negative
1 -> Positive
2 -> Neutral
```

## Dataset
Our training dataset. Because of label ambiguity, with UIT-VSMEC, UIT-ViCTSD, VOZ-HSD, we re-label the dataset with Gemini 1.5 Flash API follow the 3 labels. The specific number of samples for each dataset can be seen below: 
<table border="2">
    <tr align="center">
        <th rowspan="2">Dataset</th>
        <th colspan="3">Train</th>
        <th colspan="3">Test</th>
        <th colspan="3">Val</th>
    </tr>
    <tr align="center">
        <th>Neg</th>
        <th>Pos</th>
        <th>Neu</th>
        <th>Neg</th>
        <th>Pos</th>
        <th>Neu</th>
        <th>Neg</th>
        <th>Pos</th>
        <th>Neu</th>
    </tr>
    <tr align="center">
        <td align="left">All-filtered</td>
        <td>62708</td>
        <td>41400</td>
        <td>11593</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
        <td>5079</td>
        <td>3724</td>
        <td>638</td>
    </tr>
      <tr align="center">
        <td align="left">SA-VLSP2016</td>
        <td>4759</td>
        <td>4798</td>
        <td>4459</td>
        <td>1180</td>
        <td>1190</td>
        <td>1114</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
    </tr>
      <tr align="center">
        <td align="left">UIT-VSFC </td>
        <td>5325</td>
        <td>5643</td>
        <td>458</td>
        <td>1409</td>
        <td>1590</td>
        <td>167</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
    </tr>
      <tr align="center">
        <td align="left">UIT-VSMEC (Gemini-label)</td>
        <td>3219</td>
        <td>1665</td>
        <td>594</td>
        <td>458</td>
        <td>407</td>
        <td>210</td>
        <td>71</td>
        <td>388</td>
        <td>239</td>
        <td>52</td>
    </tr>
      <tr align="center">
        <td align="left">AIVIVN-2019</td>
        <td>6776</td>
        <td>7879</td>
        <td>-</td>
        <td>4770</td>
        <td>5168</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
    </tr>
      <tr align="center">
        <td align="left">UIT-ViCTSD (Gemini-label)</td>
        <td>3370</td>
        <td>2615</td>
        <td>933</td>
        <td>3370</td>
        <td>2615</td>
        <td>933</td>
        <td>3370</td>
        <td>2615</td>
        <td>933</td>
    </tr>
      <tr align="center">
        <td align="left">UIT-ViHSD</td>
        <td>4162</td>
        <td>19886</td>
        <td>-</td>
        <td>1132</td>
        <td>5548</td>
        <td>-</td>
        <td>482</td>
        <td>2190</td>
        <td>-</td>
    </tr>
      <tr align="center">
        <td align="left">UIT-ViSFD</td>
        <td>2850</td>
        <td>3670</td>
        <td>1266</td>
        <td>827</td>
        <td>1000</td>
        <td>397</td>
        <td>409</td>
        <td>515</td>
        <td>188</td>
    </tr>
      <tr align="center">
        <td align="left">UIT-ViOCD</td>
        <td>2292</td>
        <td>2095</td>
        <td>-</td>
        <td>279</td>
        <td>270</td>
        <td>-</td>
        <td>283</td>
        <td>265</td>
        <td>-</td>
    </tr>
      <tr align="center">
        <td align="left">Tiki-reviews</td>
        <td>20093</td>
        <td>6669</td>
        <td>4698</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
    </tr>
      <tr align="center">
        <td align="left">VOZ-HSD (Gemini-label)</td>
        <td>2676</td>
        <td>1213</td>
        <td>1071</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
        <td>-</td>
    </tr>
      <tr align="center">
        <td align="left">Vietnamese-amazon-polarity</td>
        <td>2559</td>
        <td>2441</td>
        <td>-</td>
        <td>1017</td>
        <td>983</td>
        <td>-</td>
        <td>523</td>
        <td>477</td>
        <td>-</td>
    </tr>
</table>

## Evaluation
<table>
        <tr align="center">
            <td rowspan=2><b>Model</td>
            <td colspan=4><b>SA-VLSP2016</td>
            <td colspan=4><b>AIVIVN-2019</td>
            <td colspan=4><b>UIT-VSFC</td>
            <td colspan=4><b>UIT-VSMEC (Gemini-label)</td>
            <td colspan=4><b>UIT-ViCTSD (Gemini-label)</td>
        </tr>
        <tr align="center">
            <td><b>Acc</td>
            <td><b>Prec</td>
            <td><b>Recall</td>
            <td><b>WF1</td>
            <td><b>Acc</td>
            <td><b>Prec</td>
            <td><b>Recall</td>
            <td><b>WF1</td>
            <td><b>Acc</td>
            <td><b>Prec</td>
            <td><b>Recall</td>
            <td><b>WF1</td>
            <td><b>Acc</td>
            <td><b>Prec</td>
            <td><b>Recall</td>
            <td><b>WF1</td>
            <td><b>Acc</td>
            <td><b>Prec</td>
            <td><b>Recall</td>
            <td><b>WF1</td>
        </tr>
        <tr align="center">
        <tr align="center">
            <td align="left">wonrax/phobert-base-vietnamese-sentiment</td>
            <td>61.65</td>
            <td>63.95</td>
            <td>61.65</td>
            <td>60.01</td>
            <td>84.87</td>
            <td>95.12</td>
            <td>84.87</td>
            <td>89.47</td>
            <td>76.37</td>
            <td>88.10</td>
            <td>76.37</td>
            <td>79.53</td>
            <td>65.41</td>
            <td>74.36</td>
            <td>65.41</td>
            <td>68.33</td>
            <td>62.34</td>
            <td>73.08</td>
            <td>62.34</td>
            <td>65.54</td>
        </tr>
        <tr align="center">
            <td align="left"><b>5CD-AI/Vietnamese-Sentiment-visobert</td>
            <td><b>88.06</td>
            <td><b>88.16</td>
            <td><b>88.06</td>
            <td><b>88.06</td>
            <td><b>99.62</td>
            <td><b>99.65</td>
            <td><b>99.62</td>
            <td><b>99.64</td>
            <td><b>94.65</td>
            <td><b>93.30</td>
            <td><b>93.65</td>
            <td><b>93.38</td>
            <td><b>77.91</td>
            <td><b>77.21</td>
            <td><b>77.91</td>
            <td><b>77.46</td>
            <td><b>75.10</td>
            <td><b>74.59</td>
            <td><b>75.10</td>
            <td><b>74.79</td>
        </tr>
    </div>
</table>


<table>
        <tr align="center">
            <td rowspan=2><b>Model</td>
            <td colspan=4><b>UIT-ViOCD</td>
            <td colspan=4><b>UIT-ViSFD</td>
            <td colspan=4><b>Vi-amazon-polar</td>
        </tr>
        <tr align="center">
            <td><b>Acc</td>
            <td><b>Prec</td>
            <td><b>Recall</td>
            <td><b>WF1</td>
            <td><b>Acc</td>
            <td><b>Prec</td>
            <td><b>Recall</td>
            <td><b>WF1</td>
            <td><b>Acc</td>
            <td><b>Prec</td>
            <td><b>Recall</td>
            <td><b>WF1</td>
        </tr>
        <tr align="center">
        <tr align="center">
            <td align="left">wonrax/phobert-base-vietnamese-sentiment</td>
            <td>74.68</td>
            <td>87.14</td>
            <td>74.68</td>
            <td>78.13</td>
            <td>67.90</td>
            <td>67.95</td>
            <td>67.90</td>
            <td>66.98</td>
            <td>61.40</td>
            <td>76.53</td>
            <td>61.40</td>
            <td>65.70</td>
        </tr>
        <tr align="center">
            <td align="left"><b>5CD-AI/Vietnamese-Sentiment-visobert</td>
            <td><b>94.35</td>
            <td><b>94.74</td>
            <td><b>94.35</td>
            <td><b>94.53</td>
            <td><b>93.26</td>
            <td><b>93.20</td>
            <td><b>93.26</td>
            <td><b>93.21</td>
            <td><b>89.90</td>
            <td><b>90.13</td>
            <td><b>89.90</td>
            <td><b>90.01</td>
        </tr>
    </div>
</table>


## Usage (HuggingFace Transformers)

Install `transformers` package:
    
    pip install transformers


### Pipeline
```python
from transformers import pipeline
model_path = '5CD-AI/Vietnamese-Sentiment-visobert'
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("Miếng dán dễ xước , ko khít với dt 11 prm")
```
Output:
```
[{'label': 'NEG', 'score': 0.998149037361145}]
```

### Other examples
```
Sentence:  Đây là mô hình rất hay, đáp ứng tốt nhu cầu của nhiều doanh nghiệp Việt.
### Sentiment score ####
1) POS: 0.9995
2) NEG: 0.0003
3) NEU: 0.0003
```

```
Sentence:  Qua vụ này thì uy tín của Trump càng lớn hơn nữa. Nhất là với hình ảnh đầy tính biểu tượng như trên.
### Sentiment score ####
1) POS: 0.9965
2) NEG: 0.0029
3) NEU: 0.0005
```

```
Sentence:  Bãi đi nó lừa lắm, mình có bỏ vào ví tt này hơn 20 triệu. Lãi tính ra cả tháng dc bao nhiêu mình không nhớ, nhưng khi rút về ngân hàng nó trừ phí giao dịch hơn mịa nó tiền lãi.
Nên từ đó cạch luôn
### Sentiment score ####
1) NEG: 0.999
2) POS: 0.0008
3) NEU: 0.0002
```

```
Sentence:  Vậy chắc tùy nơi rồi :D
Chỗ mình chuộng hàng masan lắm, mì gói thì không hẳn (có kokomi cũng bán chạy), con gia vị thì gần như toàn đồ masan.
### Sentiment score ####
1) NEU: 0.9824
2) NEG: 0.0157
3) POS: 0.0019
```

```
Sentence:  hội sở ở tech trần duy hưng có 1 thằng là thằng Đạt hói. Làm lâu lên lão làng, đc làm lãnh đạo nhưng chả có cái việc mẹ gì chỉ được ngồi  xếp ca cho nhân viên. xấu tính bẩn tính sân si nhất cái Tech*. Nghiệp vụ thì ậm ờ đ*o biết gì, chỉ suốt ngày nhận lương đi săm soi nhân viên là nhanh =))) đàn ông đàn ang chả khác mẹ gì mấy con mụ ngoài chợ, nó hành từng nhân viên ra bã, trừ đứa nào nịnh nọt ve vãn với nó. Lậy luôn đhs 1 thằng như thế lại được lên làm lead ở Tech.
### Sentiment score ####
1) NEG: 0.9994
2) POS: 0.0006
3) NEU: 0.0001
```

```
Sentence:  Cà phê dở ko ngon, ai chưa mua thì đừng mua
### Sentiment score ####
1) NEG: 0.9994
2) POS: 0.0005
3) NEU: 0.0001
```

```
Sentence:  Cũng tạm. Ko gì đb
### Sentiment score ####
1) NEU: 0.9387
2) NEG: 0.0471
3) POS: 0.0142
```

```
Sentence: thui báo ơi.nhà từ trong trứng ra mà sao sáng đc.
### Sentiment score ####
1) NEG: 0.988
2) POS: 0.0119
3) NEU: 0.0001
```

```
Sentence:  Dm mới kéo cái tuột luôn cái kính cường lực🙂
R phải cầm cái kính tự dán🙂 để lâu quá nó dính hai cục bụi lên nữa chứ má bực thiệt chứ
Hình như tại hai cái cục nam châm nó xúc ra 😑
### Sentiment score ####
1) NEG: 0.9928
2) POS: 0.0071
3) NEU: 0.0001
```

```
Sentence:  Mấy cái khóa kiểu này ông lên youtube tự học còn ngon hơn.
### Sentiment score ####
1) NEG: 0.9896
2) POS: 0.008
3) NEU: 0.0024
```

### Full classification

```python
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
import torch

#### Load model
model_path = '5CD-AI/Vietnamese-Sentiment-visobert'
tokenizer = AutoTokenizer.from_pretrained(model_path)
config = AutoConfig.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path).to("cuda")

sentence = 'Cũng giống mấy khoá Youtube học cũng được'
print('Sentence: ', sentence)

input_ids = torch.tensor([tokenizer.encode(sentence)]).to("cuda")

with torch.no_grad():
    out = model(input_ids)
    scores = out.logits.softmax(dim=-1).cpu().numpy()[0]

# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
print("### Sentiment score ####")
for i in range(scores.shape[0]):
    l = config.id2label[ranking[i]]
    s = scores[ranking[i]]
    print(f"{i+1}) {l}: {np.round(float(s), 4)}")
```
Output: 

```
Sentence:  Cũng giống mấy khoá Youtube học cũng được
### Sentiment score ####
1) NEU: 0.8928
2) NEG: 0.0586
3) POS: 0.0486

```


## Fine-tune Configuration
We fine-tune `5CD-AI/visobert-14gb-corpus` on downstream tasks with `transformers` library with the following configuration:
- seed: 42
- gradient_accumulation_steps: 1
- weight_decay: 0.01
- optimizer: AdamW with betas=(0.9, 0.999) and epsilon=1e-08
- training_epochs: 5
- model_max_length: 256
- learning_rate: 2e-5
- metric_for_best_model: wf1
- strategy: epoch
## References
[1] [PhoBERT: Pre-trained language models for Vietnamese](https://aclanthology.org/2020.findings-emnlp.92/)

[2] [ViSoBERT: A Pre-Trained Language Model for Vietnamese Social Media Text Processing](https://aclanthology.org/2023.emnlp-main.315/)

[3] [The Amazon Polarity dataset](https://paperswithcode.com/dataset/amazon-polarity-1)


## Disclaimer
Disclaimer: The data contains actual comments on social networks that might be construed as abusive, offensive, or obscene. Additionally, the examples and dataset may contain negative information about any business. We only collect this data and do not bear any legal responsibility.