5roop commited on
Commit
6b6086c
·
1 Parent(s): f38ed29

Add evaluation details and env specs

Browse files
Files changed (2) hide show
  1. README.md +56 -29
  2. transformers_env.yml +423 -0
README.md CHANGED
@@ -13,16 +13,17 @@ base_model:
13
 
14
  # Wav2Vec2Bert Audio frame classifier for prosodic unit detection
15
 
16
- This model predicts prosodic units on speech.
17
- For each 20ms frame the model predicts 1 or 0, indicating whether there is a prosodic unit in
18
- this frame or not.
19
 
20
- This frame-level output can be grouped into events with the frames_to_intervals function provided in the
21
- code snippets below.
22
 
23
- It is known that the model is unreliable if the audio starts or ends within a prosodic unit. This can be somewhat
24
- circumvented by 1) using the largest possible chunks that will fit your machine and 2) use overlapping chunks
25
- and combining results smartly.
 
26
 
27
 
28
 
@@ -31,16 +32,39 @@ and combining results smartly.
31
 
32
  ### Model Description
33
 
34
- <!-- Provide a longer summary of what this model is. -->
35
 
36
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
37
 
38
- - **Developed by:** Peter Rupnik, Nikola Ljubešić, Darinka Verdonik, Simona Majheničy
 
39
  - **Funded by:** MEZZANINE project
40
  - **Model type:** Wav2Vec2Bert for Audio Frame Classification
41
- - **Language(s) (NLP):** Trained and tested on Slovenian, ATM unclear if usable cross-lingually
 
42
  - **Finetuned from model:** facebook/w2v-bert-2.0
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  ## Uses
46
 
@@ -107,9 +131,9 @@ def evaluator(chunks):
107
  "prosodic_units": prosodic_units,
108
  }
109
 
110
-
111
- ds = Dataset.from_dict({"audio": [f, f]}).cast_column("audio", Audio(16000, mono=True))
112
- ds = ds.map(evaluator, batched=True, batch_size=2)
113
  print(ds["y_pred"][0])
114
  # Outputs: [0, 0, 1, 1, 1, 1, 1, ...]
115
  print(ds["y_pred_logits"][0])
@@ -124,9 +148,11 @@ print(ds["prosodic_units"][0])
124
 
125
 
126
  ### Inference on longer files
127
- If the file is too big for straight-forward inference, some chunking needs to be performed in order to process it.
128
- We know that for starts and ends of chunks the probability of false negatives increases, so it is best to process the file
129
- with some overlap between chunks or split it on silence. We illustrate the former approach here:
 
 
130
  ```python
131
  import numpy as np
132
 
@@ -266,14 +292,15 @@ print(final_intervals)
266
 
267
  ## Training Details
268
 
269
- |hyperparameter|value|
270
- |---|---|
271
- |learning rate|3e-5|
272
- |batch size|1|
273
- |gradient accumulation steps|16|
274
- |num train epochs|20|
275
- |weight decay|0.01|
276
-
277
- ## Evaluation
278
-
279
-
 
 
13
 
14
  # Wav2Vec2Bert Audio frame classifier for prosodic unit detection
15
 
16
+ This model predicts prosodic units on speech. For each 20ms frame the model
17
+ predicts 1 or 0, indicating whether there is a prosodic unit in this frame or
18
+ not.
19
 
20
+ This frame-level output can be grouped into events with the frames_to_intervals
21
+ function provided in the code snippets below.
22
 
23
+ It is known that the model is unreliable if the audio starts or ends within a
24
+ prosodic unit. This can be somewhat circumvented by 1) using the largest
25
+ possible chunks that will fit your machine and 2) use overlapping chunks and
26
+ combining results smartly.
27
 
28
 
29
 
 
32
 
33
  ### Model Description
34
 
 
35
 
 
36
 
37
+ - **Developed by:** Peter Rupnik, Nikola Ljubešić, Darinka Verdonik, Simona
38
+ Majhenič
39
  - **Funded by:** MEZZANINE project
40
  - **Model type:** Wav2Vec2Bert for Audio Frame Classification
41
+ - **Language(s) (NLP):** Trained and tested on Slovenian, ATM unclear if usable
42
+ cross-lingually
43
  - **Finetuned from model:** facebook/w2v-bert-2.0
44
 
45
+ The model was trained on [ROG-Art dataset](http://hdl.handle.net/11356/1992), on
46
+ train split only.
47
+
48
+ ### Model performance
49
+
50
+ We evaluate the model indirectly, and only care about the positive class:
51
+
52
+ 1. first prosodic units (intervals with start and end times, e.g. `[0.123,
53
+ 5.546]`) are extracted from data and model outputs
54
+ 2. if a predicted prosodic unit has an overlapping counterpart in true prosodic
55
+ units, we count it as a True Positive. If there is no overlapping true
56
+ counterpart, we count it as a False Positive, and if we have a true prosodic
57
+ unit without a counterpart in predictions, we count that as a False Negative.
58
+ 3. Based on the TP, FN, FP numbers recall, precision, and F1 score is
59
+ calculated.
60
+
61
+ In this fashion we obtain the following metrics:
62
+
63
+ * Precision: 0.9423
64
+ * Recall: 0.7802
65
+ * F_1 score: 0.8538
66
+
67
+
68
 
69
  ## Uses
70
 
 
131
  "prosodic_units": prosodic_units,
132
  }
133
 
134
+ # Create a dataset with a single instance and map our evaluator function on it:
135
+ ds = Dataset.from_dict({"audio": [f]}).cast_column("audio", Audio(16000, mono=True))
136
+ ds = ds.map(evaluator, batched=True, batch_size=1) # Adjust batch size according to your hardware specs
137
  print(ds["y_pred"][0])
138
  # Outputs: [0, 0, 1, 1, 1, 1, 1, ...]
139
  print(ds["y_pred_logits"][0])
 
148
 
149
 
150
  ### Inference on longer files
151
+ If the file is too big for straight-forward inference, some chunking needs to be
152
+ performed in order to process it. We know that for starts and ends of chunks the
153
+ probability of false negatives increases, so it is best to process the file with
154
+ some overlap between chunks or split it on silence. We illustrate the former
155
+ approach here:
156
  ```python
157
  import numpy as np
158
 
 
292
 
293
  ## Training Details
294
 
295
+ | hyperparameter | value |
296
+ | --------------------------- | ----- |
297
+ | learning rate | 3e-5 |
298
+ | batch size | 1 |
299
+ | gradient accumulation steps | 16 |
300
+ | num train epochs | 20 |
301
+ | weight decay | 0.01 |
302
+
303
+ Software environment can be found in mamba/conda [environment export yml
304
+ file](transformers_env.yml). To recreate the environment with conda/mamba, run
305
+ `mamba create -f transformers_env.yml` (replace mamba with conda if you don't
306
+ use mamba).
transformers_env.yml ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: transformers
2
+ channels:
3
+ - pytorch
4
+ - nvidia
5
+ - conda-forge
6
+ dependencies:
7
+ - _libgcc_mutex=0.1=conda_forge
8
+ - _openmp_mutex=4.5=2_kmp_llvm
9
+ - accelerate=0.33.0=pyhd8ed1ab_0
10
+ - aiohappyeyeballs=2.4.0=pyhd8ed1ab_0
11
+ - aiohttp=3.10.5=py311h61187de_0
12
+ - aiosignal=1.3.1=pyhd8ed1ab_0
13
+ - anyio=4.4.0=pyhd8ed1ab_0
14
+ - aom=3.5.0=h27087fc_0
15
+ - argon2-cffi=23.1.0=pyhd8ed1ab_0
16
+ - argon2-cffi-bindings=21.2.0=py311h9ecbd09_5
17
+ - arrow=1.3.0=pyhd8ed1ab_0
18
+ - asttokens=2.4.1=pyhd8ed1ab_0
19
+ - async-lru=2.0.4=pyhd8ed1ab_0
20
+ - atk-1.0=2.38.0=h04ea711_2
21
+ - attrs=24.2.0=pyh71513ae_0
22
+ - audioread=3.0.1=py311h38be061_1
23
+ - aws-c-auth=0.7.22=h96bc93b_2
24
+ - aws-c-cal=0.6.14=h88a6e22_1
25
+ - aws-c-common=0.9.19=h4ab18f5_0
26
+ - aws-c-compression=0.2.18=h83b837d_6
27
+ - aws-c-event-stream=0.4.2=ha47c788_12
28
+ - aws-c-http=0.8.1=h29d6fba_17
29
+ - aws-c-io=0.14.8=h21d4f22_5
30
+ - aws-c-mqtt=0.10.4=h759edc4_4
31
+ - aws-c-s3=0.5.9=h594631b_3
32
+ - aws-c-sdkutils=0.1.16=h83b837d_2
33
+ - aws-checksums=0.1.18=h83b837d_6
34
+ - aws-crt-cpp=0.26.9=he3a8b3b_0
35
+ - aws-sdk-cpp=1.11.329=hba8bd5f_3
36
+ - babel=2.14.0=pyhd8ed1ab_0
37
+ - baumwelch=0.3.9=h434a139_3
38
+ - beautifulsoup4=4.12.3=pyha770c72_0
39
+ - biopython=1.79=py311hd4cff14_3
40
+ - blas=1.0=mkl
41
+ - bleach=6.1.0=pyhd8ed1ab_0
42
+ - brotli=1.1.0=hd590300_1
43
+ - brotli-bin=1.1.0=hd590300_1
44
+ - brotli-python=1.1.0=py311hb755f60_1
45
+ - bzip2=1.0.8=h4bc722e_7
46
+ - c-ares=1.33.0=ha66036c_0
47
+ - ca-certificates=2024.12.14=hbcca054_0
48
+ - cached-property=1.5.2=hd8ed1ab_1
49
+ - cached_property=1.5.2=pyha770c72_1
50
+ - cairo=1.18.0=hebfffa5_3
51
+ - certifi=2024.12.14=pyhd8ed1ab_0
52
+ - cffi=1.17.0=py311ha8e6434_0
53
+ - charset-normalizer=3.3.2=pyhd8ed1ab_0
54
+ - click=8.1.7=unix_pyh707e725_0
55
+ - cloudpickle=3.1.0=pyhd8ed1ab_2
56
+ - colorama=0.4.6=pyhd8ed1ab_0
57
+ - comm=0.2.2=pyhd8ed1ab_0
58
+ - contourpy=1.2.1=py311h9547e67_0
59
+ - cuda-cudart=11.8.89=0
60
+ - cuda-cupti=11.8.87=0
61
+ - cuda-libraries=11.8.0=0
62
+ - cuda-nvrtc=11.8.89=0
63
+ - cuda-nvtx=11.8.86=0
64
+ - cuda-runtime=11.8.0=0
65
+ - cuda-version=12.6=3
66
+ - cycler=0.12.1=pyhd8ed1ab_0
67
+ - cython=3.0.11=py311h55d416d_3
68
+ - dataclassy=1.0.1=pyhd8ed1ab_0
69
+ - datasets=2.21.0=pyhd8ed1ab_0
70
+ - debugpy=1.8.5=py311hfdbb021_1
71
+ - decorator=5.1.1=pyhd8ed1ab_0
72
+ - defusedxml=0.7.1=pyhd8ed1ab_0
73
+ - dill=0.3.8=pyhd8ed1ab_0
74
+ - entrypoints=0.4=pyhd8ed1ab_0
75
+ - exceptiongroup=1.2.2=pyhd8ed1ab_0
76
+ - executing=2.1.0=pyhd8ed1ab_0
77
+ - expat=2.6.2=h59595ed_0
78
+ - ffmpeg=5.1.2=gpl_h8dda1f0_106
79
+ - filelock=3.15.4=pyhd8ed1ab_0
80
+ - font-ttf-dejavu-sans-mono=2.37=hab24e00_0
81
+ - font-ttf-inconsolata=3.000=h77eed37_0
82
+ - font-ttf-source-code-pro=2.038=h77eed37_0
83
+ - font-ttf-ubuntu=0.83=h77eed37_2
84
+ - fontconfig=2.14.2=h14ed4e7_0
85
+ - fonts-conda-ecosystem=1=0
86
+ - fonts-conda-forge=1=0
87
+ - fonttools=4.53.1=py311h61187de_0
88
+ - fqdn=1.5.1=pyhd8ed1ab_0
89
+ - freetype=2.12.1=h267a509_2
90
+ - fribidi=1.0.10=h36c2ea0_0
91
+ - frozenlist=1.4.1=py311h459d7ec_0
92
+ - fsspec=2024.5.0=pyhff2d567_0
93
+ - gdk-pixbuf=2.42.12=hb9ae30d_0
94
+ - gettext=0.22.5=he02047a_3
95
+ - gettext-tools=0.22.5=he02047a_3
96
+ - gflags=2.2.2=he1b5a44_1004
97
+ - glog=0.7.1=hbabe93e_0
98
+ - gmp=6.3.0=hac33072_2
99
+ - gmpy2=2.1.5=py311hc4f1f91_1
100
+ - gnutls=3.7.9=hb077bed_0
101
+ - graphite2=1.3.13=h59595ed_1003
102
+ - graphviz=12.0.0=hba01fac_0
103
+ - greenlet=3.1.1=py311hfdbb021_0
104
+ - gtk2=2.24.33=h6470451_5
105
+ - gts=0.7.6=h977cf35_4
106
+ - h11=0.14.0=pyhd8ed1ab_0
107
+ - h2=4.1.0=pyhd8ed1ab_0
108
+ - harfbuzz=9.0.0=hda332d3_1
109
+ - hdbscan=0.8.38.post1=py311h9f3472d_2
110
+ - hpack=4.0.0=pyh9f0ad1d_0
111
+ - httpcore=1.0.5=pyhd8ed1ab_0
112
+ - httpx=0.27.2=pyhd8ed1ab_0
113
+ - huggingface_hub=0.24.6=pyhd8ed1ab_0
114
+ - hyperframe=6.0.1=pyhd8ed1ab_0
115
+ - icu=75.1=he02047a_0
116
+ - idna=3.7=pyhd8ed1ab_0
117
+ - importlib-metadata=8.4.0=pyha770c72_0
118
+ - importlib_metadata=8.4.0=hd8ed1ab_0
119
+ - importlib_resources=6.4.5=pyhd8ed1ab_0
120
+ - ipykernel=6.29.5=pyh3099207_0
121
+ - ipython=8.27.0=pyh707e725_0
122
+ - ipywidgets=8.1.5=pyhd8ed1ab_0
123
+ - isoduration=20.11.0=pyhd8ed1ab_0
124
+ - jedi=0.19.1=pyhd8ed1ab_0
125
+ - jinja2=3.1.4=pyhd8ed1ab_0
126
+ - joblib=1.4.2=pyhd8ed1ab_0
127
+ - json5=0.9.25=pyhd8ed1ab_0
128
+ - jsonpointer=3.0.0=py311h38be061_1
129
+ - jsonschema=4.23.0=pyhd8ed1ab_0
130
+ - jsonschema-specifications=2023.12.1=pyhd8ed1ab_0
131
+ - jsonschema-with-format-nongpl=4.23.0=hd8ed1ab_0
132
+ - jupyter=1.1.1=pyhd8ed1ab_0
133
+ - jupyter-lsp=2.2.5=pyhd8ed1ab_0
134
+ - jupyter_client=8.6.2=pyhd8ed1ab_0
135
+ - jupyter_console=6.6.3=pyhd8ed1ab_0
136
+ - jupyter_core=5.7.2=py311h38be061_0
137
+ - jupyter_events=0.10.0=pyhd8ed1ab_0
138
+ - jupyter_server=2.14.2=pyhd8ed1ab_0
139
+ - jupyter_server_terminals=0.5.3=pyhd8ed1ab_0
140
+ - jupyterlab=4.2.5=pyhd8ed1ab_0
141
+ - jupyterlab_pygments=0.3.0=pyhd8ed1ab_1
142
+ - jupyterlab_server=2.27.3=pyhd8ed1ab_0
143
+ - jupyterlab_widgets=3.0.13=pyhd8ed1ab_0
144
+ - kaldi=5.5.1112=cpu_hd7b63f8_3
145
+ - kalpy=0.6.7=py311hd18a35c_0
146
+ - keyutils=1.6.1=h166bdaf_0
147
+ - kiwisolver=1.4.5=py311h9547e67_1
148
+ - kneed=0.8.5=pyhd8ed1ab_0
149
+ - krb5=1.21.3=h659f571_0
150
+ - lame=3.100=h166bdaf_1003
151
+ - lazy-loader=0.4=pyhd8ed1ab_1
152
+ - lazy_loader=0.4=pyhd8ed1ab_1
153
+ - lcms2=2.16=hb7c19ff_0
154
+ - ld_impl_linux-64=2.40=hf3520f5_7
155
+ - lerc=4.0.0=h27087fc_0
156
+ - libabseil=20240116.2=cxx17_he02047a_1
157
+ - libarrow=16.1.0=hcb6531f_6_cpu
158
+ - libarrow-acero=16.1.0=hac33072_6_cpu
159
+ - libarrow-dataset=16.1.0=hac33072_6_cpu
160
+ - libarrow-substrait=16.1.0=h7e0c224_6_cpu
161
+ - libasprintf=0.22.5=he8f35ee_3
162
+ - libasprintf-devel=0.22.5=he8f35ee_3
163
+ - libblas=3.9.0=16_linux64_mkl
164
+ - libbrotlicommon=1.1.0=hd590300_1
165
+ - libbrotlidec=1.1.0=hd590300_1
166
+ - libbrotlienc=1.1.0=hd590300_1
167
+ - libcblas=3.9.0=16_linux64_mkl
168
+ - libcrc32c=1.1.2=h9c3ff4c_0
169
+ - libcublas=11.11.3.6=0
170
+ - libcufft=10.9.0.58=0
171
+ - libcufile=1.11.0.15=0
172
+ - libcurand=10.3.7.37=0
173
+ - libcurl=8.8.0=hca28451_1
174
+ - libcusolver=11.4.1.48=0
175
+ - libcusparse=11.7.5.86=0
176
+ - libdeflate=1.21=h4bc722e_0
177
+ - libdrm=2.4.123=hb9d3cd8_0
178
+ - libedit=3.1.20191231=he28a2e2_2
179
+ - libev=4.33=hd590300_2
180
+ - libevent=2.1.12=hf998b51_1
181
+ - libexpat=2.6.2=h59595ed_0
182
+ - libffi=3.4.2=h7f98852_5
183
+ - libflac=1.4.3=h59595ed_0
184
+ - libgcc=14.1.0=h77fa898_1
185
+ - libgcc-ng=14.1.0=h69a702a_1
186
+ - libgd=2.3.3=hd3e95f3_10
187
+ - libgettextpo=0.22.5=he02047a_3
188
+ - libgettextpo-devel=0.22.5=he02047a_3
189
+ - libgfortran=3.0.0=1
190
+ - libgfortran-ng=14.1.0=h69a702a_0
191
+ - libgfortran5=14.1.0=hc5f4f2c_0
192
+ - libglib=2.82.1=h2ff4ddf_0
193
+ - libgoogle-cloud=2.24.0=h2736e30_0
194
+ - libgoogle-cloud-storage=2.24.0=h3d9a0c8_0
195
+ - libgrpc=1.62.2=h15f2491_0
196
+ - libhwloc=2.11.1=default_hecaa2ac_1000
197
+ - libiconv=1.17=hd590300_2
198
+ - libidn2=2.3.7=hd590300_0
199
+ - libjpeg-turbo=3.0.0=hd590300_1
200
+ - liblapack=3.9.0=16_linux64_mkl
201
+ - liblapacke=3.9.0=16_linux64_mkl
202
+ - libllvm14=14.0.6=hcd5def8_4
203
+ - libnghttp2=1.58.0=h47da74e_1
204
+ - libnpp=11.8.0.86=0
205
+ - libnsl=2.0.1=hd590300_0
206
+ - libnvjpeg=11.9.0.86=0
207
+ - libogg=1.3.5=h4ab18f5_0
208
+ - libopus=1.3.1=h7f98852_1
209
+ - libparquet=16.1.0=h6a7eafb_6_cpu
210
+ - libpciaccess=0.18=hd590300_0
211
+ - libpng=1.6.43=h2797004_0
212
+ - libpq=16.4=h2d7952a_2
213
+ - libprotobuf=4.25.3=h08a7969_0
214
+ - libre2-11=2023.09.01=h5a48ba9_2
215
+ - librosa=0.10.2.post1=pyhd8ed1ab_0
216
+ - librsvg=2.58.4=hc0ffecb_0
217
+ - libsndfile=1.2.2=hc60ed4a_1
218
+ - libsodium=1.0.20=h4ab18f5_0
219
+ - libsqlite=3.46.0=hde9e2c9_0
220
+ - libssh2=1.11.0=h0841786_0
221
+ - libstdcxx=14.1.0=hc0a3c3a_1
222
+ - libstdcxx-ng=14.1.0=h4852527_1
223
+ - libtasn1=4.19.0=h166bdaf_0
224
+ - libthrift=0.19.0=hb90f79a_1
225
+ - libtiff=4.7.0=h6565414_0
226
+ - libunistring=0.9.10=h7f98852_0
227
+ - libutf8proc=2.8.0=h166bdaf_0
228
+ - libuuid=2.38.1=h0b41bf4_0
229
+ - libva=2.18.0=h0b41bf4_0
230
+ - libvorbis=1.3.7=h9c3ff4c_0
231
+ - libvpx=1.11.0=h9c3ff4c_3
232
+ - libwebp-base=1.4.0=hd590300_0
233
+ - libxcb=1.17.0=h8a09558_0
234
+ - libxcrypt=4.4.36=hd590300_1
235
+ - libxml2=2.12.7=he7c6b58_4
236
+ - libxslt=1.1.39=h76b75d6_0
237
+ - libzlib=1.3.1=h4ab18f5_1
238
+ - llvm-openmp=15.0.7=h0cdce71_0
239
+ - llvmlite=0.42.0=py311ha6695c7_1
240
+ - lxml=5.3.0=py311hcfaa980_1
241
+ - lz4-c=1.9.4=hcb278e6_0
242
+ - mad=0.15.1b=h9c3ff4c_1
243
+ - markdown-it-py=3.0.0=pyhd8ed1ab_0
244
+ - markupsafe=2.1.5=py311h459d7ec_0
245
+ - matplotlib-base=3.9.2=py311h74b4f7c_0
246
+ - matplotlib-inline=0.1.7=pyhd8ed1ab_0
247
+ - mdurl=0.1.2=pyhd8ed1ab_0
248
+ - mistune=3.0.2=pyhd8ed1ab_0
249
+ - mkl=2022.2.1=h84fe81f_16997
250
+ - montreal-forced-aligner=3.1.3=pyhd8ed1ab_0
251
+ - mpc=1.3.1=hfe3b2da_0
252
+ - mpfr=4.2.1=h38ae2d0_2
253
+ - mpg123=1.32.6=h59595ed_0
254
+ - mpmath=1.3.0=pyhd8ed1ab_0
255
+ - msgpack-python=1.0.8=py311h52f7536_0
256
+ - multidict=6.0.5=py311h459d7ec_0
257
+ - multiprocess=0.70.16=py311h459d7ec_0
258
+ - munkres=1.1.4=pyh9f0ad1d_0
259
+ - nbclient=0.10.0=pyhd8ed1ab_0
260
+ - nbconvert-core=7.16.4=pyhd8ed1ab_1
261
+ - nbformat=5.10.4=pyhd8ed1ab_0
262
+ - ncurses=6.5=h59595ed_0
263
+ - nest-asyncio=1.6.0=pyhd8ed1ab_0
264
+ - nettle=3.9.1=h7ab15ed_0
265
+ - networkx=3.3=pyhd8ed1ab_1
266
+ - ngram=1.3.16=h434a139_1
267
+ - notebook=7.2.2=pyhd8ed1ab_0
268
+ - notebook-shim=0.2.4=pyhd8ed1ab_0
269
+ - numba=0.59.1=py311h96b013e_0
270
+ - numpy=1.26.4=py311h64a7726_0
271
+ - openfst=1.8.3=h00ab1b0_2
272
+ - openh264=2.3.1=hcb278e6_2
273
+ - openjpeg=2.5.2=h488ebb8_0
274
+ - openssl=3.4.0=hb9d3cd8_0
275
+ - orc=2.0.1=h17fec99_1
276
+ - overrides=7.7.0=pyhd8ed1ab_0
277
+ - p11-kit=0.24.1=hc5aa10d_0
278
+ - packaging=24.1=pyhd8ed1ab_0
279
+ - pandas=2.2.2=py311h14de704_1
280
+ - pandocfilters=1.5.0=pyhd8ed1ab_0
281
+ - pango=1.54.0=h4c5309f_1
282
+ - parso=0.8.4=pyhd8ed1ab_0
283
+ - pcre2=10.44=hba22ea6_2
284
+ - pexpect=4.9.0=pyhd8ed1ab_0
285
+ - pgvector=0.7.4=h2f8f9d6_0
286
+ - pgvector-python=0.3.4=pyh1ff3077_0
287
+ - pickleshare=0.7.5=py_1003
288
+ - pillow=10.4.0=py311h4aec55e_1
289
+ - pip=24.2=pyhd8ed1ab_0
290
+ - pixman=0.43.2=h59595ed_0
291
+ - pkgutil-resolve-name=1.3.10=pyhd8ed1ab_1
292
+ - platformdirs=4.2.2=pyhd8ed1ab_0
293
+ - polars=1.17.1=py311h03f6b34_0
294
+ - pooch=1.8.2=pyhd8ed1ab_0
295
+ - postgresql=16.4=hb2eb5c0_2
296
+ - praatio=6.0.0=pyhd8ed1ab_0
297
+ - prometheus_client=0.20.0=pyhd8ed1ab_0
298
+ - prompt-toolkit=3.0.47=pyha770c72_0
299
+ - prompt_toolkit=3.0.47=hd8ed1ab_0
300
+ - psutil=6.0.0=py311h331c9d8_0
301
+ - psycopg2=2.9.9=py311h03dec38_0
302
+ - pthread-stubs=0.4=h36c2ea0_1001
303
+ - ptyprocess=0.7.0=pyhd3deb0d_0
304
+ - pure_eval=0.2.3=pyhd8ed1ab_0
305
+ - pyarrow=16.1.0=py311h781c19f_1
306
+ - pyarrow-core=16.1.0=py311h8e2c35d_1_cpu
307
+ - pyarrow-hotfix=0.6=pyhd8ed1ab_0
308
+ - pycparser=2.22=pyhd8ed1ab_0
309
+ - pydub=0.25.1=pyhd8ed1ab_0
310
+ - pygments=2.18.0=pyhd8ed1ab_0
311
+ - pynini=2.1.6=py311h9547e67_0
312
+ - pynvml=11.4.1=pyhd8ed1ab_0
313
+ - pyparsing=3.1.2=pyhd8ed1ab_0
314
+ - pysocks=1.7.1=pyha2e5f31_6
315
+ - pysoundfile=0.12.1=pyhd8ed1ab_0
316
+ - python=3.11.9=hb806964_0_cpython
317
+ - python-dateutil=2.9.0=pyhd8ed1ab_0
318
+ - python-fastjsonschema=2.20.0=pyhd8ed1ab_0
319
+ - python-json-logger=2.0.7=pyhd8ed1ab_0
320
+ - python-tzdata=2024.1=pyhd8ed1ab_0
321
+ - python-xxhash=3.5.0=py311h61187de_0
322
+ - python_abi=3.11=5_cp311
323
+ - pytorch=2.4.0=py3.11_cuda11.8_cudnn9.1.0_0
324
+ - pytorch-cuda=11.8=h7e8668a_5
325
+ - pytorch-mutex=1.0=cuda
326
+ - pytz=2024.1=pyhd8ed1ab_0
327
+ - pyyaml=6.0.2=py311h61187de_0
328
+ - pyzmq=26.2.0=py311h7deb3e3_2
329
+ - qhull=2020.2=h434a139_5
330
+ - re2=2023.09.01=h7f4b329_2
331
+ - readline=8.2=h8228510_1
332
+ - referencing=0.35.1=pyhd8ed1ab_0
333
+ - regex=2024.7.24=py311h61187de_0
334
+ - requests=2.32.3=pyhd8ed1ab_0
335
+ - rfc3339-validator=0.1.4=pyhd8ed1ab_0
336
+ - rfc3986-validator=0.1.1=pyh9f0ad1d_0
337
+ - rich=13.8.1=pyhd8ed1ab_0
338
+ - rich-click=1.8.3=pyhd8ed1ab_0
339
+ - rpds-py=0.20.0=py311h9e33e62_1
340
+ - s2n=1.4.15=he19d79f_0
341
+ - safetensors=0.4.4=py311hb3a8bbb_0
342
+ - scalene=1.5.41=py311h4332511_0
343
+ - scikit-learn=1.2.2=py311hc009520_2
344
+ - scipy=1.14.0=py311h0a5b728_2
345
+ - send2trash=1.8.3=pyh0d859eb_0
346
+ - setuptools=72.2.0=pyhd8ed1ab_0
347
+ - six=1.16.0=pyh6c4a22f_0
348
+ - snappy=1.2.1=ha2e4443_0
349
+ - sniffio=1.3.1=pyhd8ed1ab_0
350
+ - soupsieve=2.5=pyhd8ed1ab_1
351
+ - sox=14.4.2=h32e7c5b_1019
352
+ - soxr=0.1.3=h0b41bf4_3
353
+ - soxr-python=0.4.0=py311h07ce7c0_0
354
+ - sqlalchemy=2.0.35=py311h9ecbd09_0
355
+ - sqlite=3.46.0=h6d4b2fc_0
356
+ - stack_data=0.6.2=pyhd8ed1ab_0
357
+ - svt-av1=1.4.1=hcb278e6_0
358
+ - sympy=1.13.2=pypyh2585a3b_103
359
+ - tbb=2021.12.0=h434a139_3
360
+ - terminado=0.18.1=pyh0d859eb_0
361
+ - threadpoolctl=3.5.0=pyhc1e730c_0
362
+ - tinycss2=1.3.0=pyhd8ed1ab_0
363
+ - tk=8.6.13=noxft_h4845f30_101
364
+ - tokenizers=0.19.1=py311h6640629_0
365
+ - tomli=2.0.1=pyhd8ed1ab_0
366
+ - torchaudio=2.4.0=py311_cu118
367
+ - torchtriton=3.0.0=py311
368
+ - torchvision=0.19.0=py311_cu118
369
+ - tornado=6.4.1=py311h9ecbd09_1
370
+ - tqdm=4.66.5=pyhd8ed1ab_0
371
+ - traitlets=5.14.3=pyhd8ed1ab_0
372
+ - transformers=4.44.1=pyhd8ed1ab_0
373
+ - types-python-dateutil=2.9.0.20240906=pyhd8ed1ab_0
374
+ - typing-extensions=4.12.2=hd8ed1ab_0
375
+ - typing_extensions=4.12.2=pyha770c72_0
376
+ - typing_utils=0.1.0=pyhd8ed1ab_0
377
+ - tzcode=2024b=hb9d3cd8_0
378
+ - tzdata=2024a=h0c530f3_0
379
+ - uri-template=1.3.0=pyhd8ed1ab_0
380
+ - urllib3=2.2.2=pyhd8ed1ab_1
381
+ - wcwidth=0.2.13=pyhd8ed1ab_0
382
+ - webcolors=24.8.0=pyhd8ed1ab_0
383
+ - webencodings=0.5.1=pyhd8ed1ab_2
384
+ - websocket-client=1.8.0=pyhd8ed1ab_0
385
+ - wheel=0.44.0=pyhd8ed1ab_0
386
+ - widgetsnbextension=4.0.13=pyhd8ed1ab_0
387
+ - x264=1!164.3095=h166bdaf_2
388
+ - x265=3.5=h924138e_3
389
+ - xorg-fixesproto=5.0=h7f98852_1002
390
+ - xorg-kbproto=1.0.7=h7f98852_1002
391
+ - xorg-libice=1.1.1=hb9d3cd8_1
392
+ - xorg-libsm=1.2.4=he73a12e_1
393
+ - xorg-libx11=1.8.10=h4f16b4b_0
394
+ - xorg-libxau=1.0.11=hd590300_0
395
+ - xorg-libxdmcp=1.1.3=h7f98852_0
396
+ - xorg-libxext=1.3.4=h0b41bf4_2
397
+ - xorg-libxfixes=5.0.3=h7f98852_1004
398
+ - xorg-libxrender=0.9.11=hb9d3cd8_1
399
+ - xorg-xextproto=7.3.0=h0b41bf4_1003
400
+ - xorg-xorgproto=2024.1=hb9d3cd8_1
401
+ - xorg-xproto=7.0.31=h7f98852_1007
402
+ - xxhash=0.8.2=hd590300_0
403
+ - xz=5.2.6=h166bdaf_0
404
+ - yaml=0.2.5=h7f98852_2
405
+ - yarl=1.9.4=py311h459d7ec_0
406
+ - zeromq=4.3.5=ha4adb4c_5
407
+ - zip=3.0=hd590300_3
408
+ - zipp=3.20.0=pyhd8ed1ab_0
409
+ - zlib=1.3.1=h4ab18f5_1
410
+ - zstandard=0.23.0=py311h5cd10c7_0
411
+ - zstd=1.5.6=ha6fb4c9_0
412
+ - pip:
413
+ - annotated-types==0.7.0
414
+ - bokeh==3.6.2
415
+ - fastapi==0.112.1
416
+ - line-profiler==4.1.3
417
+ - pydantic==2.8.2
418
+ - pydantic-core==2.20.1
419
+ - starlette==0.38.2
420
+ - transliterate==1.10.2
421
+ - uvicorn==0.30.6
422
+ - xyzservices==2024.9.0
423
+ prefix: /home/peterr/mambaforge/envs/transformers