--- license: mit base_model: microsoft/xtremedistil-l6-h384-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: xtremedistil-l6-h384-uncased-v4.0 results: [] --- # xtremedistil-l6-h384-uncased-v4.0 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5570 - F1 Macro: 0.6744 - F1 Micro: 0.6771 - Accuracy Balanced: 0.6742 - Accuracy: 0.6771 - Precision Macro: 0.6748 - Recall Macro: 0.6742 - Precision Micro: 0.6771 - Recall Micro: 0.6771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 40 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.5719 | 1.69 | 200 | 0.5779 | 0.6387 | 0.6559 | 0.6420 | 0.6559 | 0.6609 | 0.6420 | 0.6559 | 0.6559 | ### eval result |Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset| | :---: | :---: | :---: | :---: | :---: | |eval_loss|0.558|0.728|0.56|0.557| |eval_f1_macro|0.676|0.494|0.682|0.674| |eval_f1_micro|0.679|0.531|0.685|0.677| |eval_accuracy_balanced|0.676|0.523|0.682|0.674| |eval_accuracy|0.679|0.531|0.685|0.677| |eval_precision_macro|0.676|0.53|0.682|0.675| |eval_recall_macro|0.676|0.523|0.682|0.674| |eval_precision_micro|0.679|0.531|0.685|0.677| |eval_recall_micro|0.679|0.531|0.685|0.677| |eval_runtime|9.08|0.195|1.746|7.023| |eval_samples_per_second|936.093|4861.442|973.854|968.275| |eval_steps_per_second|7.379|41.112|8.02|7.689| |Size of dataset|8500|946|1700|6800| ### Framework versions - Transformers 4.33.3 - Pytorch 2.5.1+cu121 - Datasets 2.14.7 - Tokenizers 0.13.3