Upload best DQN LunarLander-v2 agent (tuned with Optuna).
Browse files- .gitattributes +1 -0
- LunarLander-v2-DQN-optuna.zip +3 -0
- LunarLander-v2-DQN-optuna/_stable_baselines3_version +1 -0
- LunarLander-v2-DQN-optuna/data +115 -0
- LunarLander-v2-DQN-optuna/policy.optimizer.pth +3 -0
- LunarLander-v2-DQN-optuna/policy.pth +3 -0
- LunarLander-v2-DQN-optuna/pytorch_variables.pth +3 -0
- LunarLander-v2-DQN-optuna/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
LunarLander-v2-DQN-optuna.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e25500a82adf52d2647263468ff6ed81cbf9c87e24731f9c7a238ade431f6bcf
|
3 |
+
size 60954
|
LunarLander-v2-DQN-optuna/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
LunarLander-v2-DQN-optuna/data
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7f02d1c528c0>",
|
8 |
+
"_build": "<function DQNPolicy._build at 0x7f02d1c52950>",
|
9 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f02d1c529e0>",
|
10 |
+
"forward": "<function DQNPolicy.forward at 0x7f02d1c52a70>",
|
11 |
+
"_predict": "<function DQNPolicy._predict at 0x7f02d1c52b00>",
|
12 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f02d1c52b90>",
|
13 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f02d1c52c20>",
|
14 |
+
"__abstractmethods__": "frozenset()",
|
15 |
+
"_abc_impl": "<_abc_data object at 0x7f02d1cc2510>"
|
16 |
+
},
|
17 |
+
"verbose": 1,
|
18 |
+
"policy_kwargs": {},
|
19 |
+
"observation_space": {
|
20 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
21 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
22 |
+
"dtype": "float32",
|
23 |
+
"_shape": [
|
24 |
+
8
|
25 |
+
],
|
26 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
27 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
28 |
+
"bounded_below": "[False False False False False False False False]",
|
29 |
+
"bounded_above": "[False False False False False False False False]",
|
30 |
+
"_np_random": null
|
31 |
+
},
|
32 |
+
"action_space": {
|
33 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
34 |
+
":serialized:": "gASVRwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAEV/7wbQPzqeCAL/NwkifbphzhtIgVn5WLf+1uQe15WVtrR+BUU0YYPkkKq99M4Sep6tFMe87EdWRKKOm/AsUPzM1RQcOeiq+d/IzI8HDo5mA/Xxtb5ceyHNNkPLUF+rXiOwoXWHbFa2Fi7vJIKgTSSXMQrj774NbG7S1S1v/MgzrJlc6wFKLYpe28iTgXyCb+d7md2l2e1zd1X29hXi7hOAzsfUiYgqeA+W0pIuZfHzFNKN7weiWVFGA18p+VxM1TiqVgBReXt6MS0+NWcqs464pxnzp+IcbASjKAgdx6qVzlj99kwhtprMWdOGfGzu8fwcX71fS1wzxJmZq/eUvzKW/Cjs9jElnb3miIy3gN0zPVYDKKgpX5xicoUnkLkcSnpxYePBSjjPUQ2n2Vm8Blb8tuSVGA4egFClF+PC2HB5J4Rsju7YRlWTZOHCtAtHb7V7spVeLHuCZFRjZ5oOTNNQ0MtScpxqa+qEKh2h0OQEDtsBuHjTRZbiD1WOrlCXyeRIabcaCs3ZFk8k5fT8/kh/gcIa41GHp7UWrRIL1rRHvcRm9jWufWTQLYZF6CKKC/Fx+KUyfDHEn2ruiTKDEbvso/p4+PjhRXMmlDwVfg6+mPCKgpxIZUQv+sP1YwFmWVy0uRaHDG0NKYhBnGV9h6rU+FIh57MIc2jAZgkCOjWImLIABNqId2XLKeXTIH2R3GDj2SB90iBm0neD0dRWOjD9gD7YPSHoUODIG0Ja4GjE6mzCCUN3rGeHiicgpJuJy00n1DevUgDzF1jCq7a99i/oPcMsBVv55YuDYNCOi8VhXISNwfJyw+UlNdhvm4TkBbJB0eGsvThtNqptud0QqoHXx6v8hM8Q6i4+8SYXQPbsy10WqmrOTRJNUdEEZaVHNGiOEHfQqdUQhd9jHGk5ItcnAjFIu4/M48tr6gA1qrppS6YkfzkdaWqJteU5WnyrrDMjwQBniscbaWq7aWKxAbLkxONoQgzY4+CWjHI48y4/fEGm2IK7vJ1PRHa8h/kK9OFgIAihS8mEV9+Xs0uZIRn2HyUdYtht4GI6l+DAtk+C9qwrjuPY8GDG67jQaYVj5d4tvMxIuKMQMZCHpEobUFzcRGi5dX5ffDnOC+LDJirchEMwsja0FNROKOLO++9tTsZ7vF1xiQig3zjf1mdHL5Y0zbyk3IwCAsvPVbOygVHOiP+xn8N1OmRjkPPkRr+6kzifq4iH+NxFP5/QF8MjjQoKDr9Fsro3lpRHVr82NnSDSpUmGrVnbMcCpEqJxwWMamoobE9CvcA1Comu39vKpjZ72AnlJOgV+8XYkMkFDWzWWUWXhCIl37XAFM4nZckUAoNYfngU/qCEygXxpVGzKtZSHL11dmig9mR6AqIrDeLhMLjgM1XEks0/zVulU3oGsU0rcLtZR2elUrEuioEvuH0e7OuQOK54wsuHs+HZUX8FsdJpTo9DFO/pQcS/6G5khHUfPLq4C0B3o81mW5dVFL1o6lTaA85wSAGfxNpwBKpmEUtv5m31tAhcNKNZBAlhsUwfaeQoOC0KOjFKeTGu7jgxGe1Zsn6FOX/qkUsJDAIO45fCrl/qPp8UXtD6VVN8o306dreiWM8UZpnF0iwrTLhVBxWZOmAMVCv1kzM8PkFCx6BwrF2emlqEr8y3l/3ik9YfbQuCIDqdlTUbMJOyIYa5MaphCLkl1+L8afScF8r44IV95p5/9FNnSlydj3SCQtG6Xp+eXNFZSxlgWBCMe87L6HPBsHSC3OnryFTlKLIN0CXgrQmZW4T7q/zovHLDrYvFCqnfZzPuQ6QvycMA7x/GqP1KO8H+r95hHVVAAKB4+Fo1xLwxvBFTSqMMPk8BR+WxE0myWt054blS4KfItTIA+5Ia+kBYr7oN32QvRA1j8Y7Jvl+4rVUCqOzbmwU15evosAFsjJ27fMvkY7r5zELjoRIOaNg1eMBmEkP+X/rMj2v4I9mtSsYbERjYOvJ1f5j/Kcz3iz6dadlMUNNLetuygJPg+gH9X9BYA/zTYaKz2mRJiedIDMhudae5ji6svoLq/bkphzU5sXwdO5t/yPcMlnq35/pW+Jdif1E4n0jMRv3Mz0VMuju6bg0p2QWxsHA/InhbhaJCNGlFV8yRNoyVgeH/Vy/FJFMOApUMsfQsmU40wMev6htYQBhe6xsAAzNH990mFs8O4aE8cA3SDByp10Apgi3LLoGS5f9VRVaDLeTfAsFkSS/mx+trWExxu+xUc/vXlV8DeKCQMbLmgp4fxVq8ZkNCaIaHGDnko6v2Bj9XcMUPC5oHL1GU60jaZZOyz4QYVXkRTTvIDqV2rqPQYiEKfxOM5ygkbRtNgM+7KgfTad7SOfpb3nzwScfr77YNxMm/gQg5uLEIlu6+YgHQ992WuHSe6YBe/M9uEi/VaryGFpnxgtrKNuN32ilyX4kEbDT+Dpv+jD3azh7qtrmbFxwyXRgOJ3yA5USNPru3vVjPN6q4h1WjDZlGvPzGea+/3YYtD15Lo2H5/RC46kGn7n6DEqCaRmu2VB0OJ5OJuuAfEJg2ZjKEJZdkMPfP3JI1SK6QVciavfOrSthZElpNUdmfll/CjLH9vK+PL7314gvJV+/8hhQ4WkUptxCOmKGZlgi9zNCFu74LFIYgGtpjMyQrav2HWLI42WUZDQfEmVwvAGc/WTocatC8yc+RqW5F+RTjGFpUr0ms3hX54tGwwkXXLU+javBMlSdnl39/bZZkCIBkXdqvfVE4T0lg0kKmZnl0DZ8ks8aTT2SbE/9pLq46Zw1vsSW6rmxdqzhJSQ5pahuc7pLoUQV82IZiecbDg+GmrfSPMdUNC2kx71nGvxjn9Jqs2g9hPNRSj3LWYIGYtTETPOWaHaYO7pvJpN53H7Ho70vXypNioE0MmbnzBwD18Ijxtcqe/OD+k9Np7NqYJ03TK3Ot1rwBCBbO6bGlGK0ryLCNRcD+WnOZNcTrUP/AQOvGefiYsDJP2AfsO+im87jtBy6yNaJLvRqwTdWThsQHZSw5y/6HySMacGJtslJBlkoj5lwINcAji07K8iiHn8HH1ctuye61UMLS23G0F7+pm91uDFNsH99D/KlPEW0oUd61Hnx4vKkWH+LTvJMjPwF0ZZLoMypfOTvmd2JUYVD/+gjU2ehYsRyvpDsa9rGfh7AtOEug7EdTPwqqZSkVcWRQWPHUzFEP89kwtSrL870lfQHHOuAS/94Tb5WRVv3I/r/7CL9J2GMyNssHgcuPPb5VInI9wrIOmh33bxO1JBWhQLznzstPwPTx1s3up/+pOv4vrXtYKFfTZdl5gWSY7F7QBhO7Zj/KDTBd4pR0lGKMA3Bvc5RNEAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
35 |
+
"n": 4,
|
36 |
+
"_shape": [],
|
37 |
+
"dtype": "int64",
|
38 |
+
"_np_random": "RandomState(MT19937)"
|
39 |
+
},
|
40 |
+
"n_envs": 16,
|
41 |
+
"num_timesteps": 1280,
|
42 |
+
"_total_timesteps": 1222,
|
43 |
+
"_num_timesteps_at_start": 0,
|
44 |
+
"seed": null,
|
45 |
+
"action_noise": null,
|
46 |
+
"start_time": 1654990580.1301117,
|
47 |
+
"learning_rate": 0.0001,
|
48 |
+
"tensorboard_log": null,
|
49 |
+
"lr_schedule": {
|
50 |
+
":type:": "<class 'function'>",
|
51 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
52 |
+
},
|
53 |
+
"_last_obs": {
|
54 |
+
":type:": "<class 'numpy.ndarray'>",
|
55 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAXfLqPsl0aT5sTKe9zZlIvreBMr6aDk4/AAAAAAAAAAA2gQG/oHWDP2Exgr+HxU2/Q59QP1q3iz4AAAAAAAAAABq92D0kDIg/YGcLP8V9gb9NViO+WWJIvgAAAAAAAAAAQOcZvvxa5j7XhYu+FLuJvx/Cs7tf3Bm+AAAAAAAAAADG1ES+F3T4PmXn1b7M3Ya/cmvPPhmnKj4AAAAAAAAAADosUz4hUaK8BqHBPjJSnb+FBIm+oCkTPgAAgD8AAAAAzYWtPYgunz9nZxA/Z48Nv7xHDb4GKMO9AAAAAAAAAADzrQ8+1f2LPw4KJz8Kuyq/5F+lvb58kL0AAAAAAAAAAH78n77cmH4+mpC7vhxAl7+WEgC8eJNYPgAAAAAAAAAAWj//PdqXaD/bzmQ+sUguvz22HL0PMcC9AAAAAAAAAACmwVS/kqWSPgK6ur/J472/RnnEP6fvST8AAAAAAAAAACxxKb9ivY4/U87Qvy+dSr82H6k/AcsIPwAAAAAAAAAAiQw/vxN20j/v25u/klgDv4aEJD8dOIY9AAAAAAAAAAAg7ks+hzuVP9AfjT6pXD+/gQtmvqogRr4AAAAAAAAAAAAmaT1Ptjg96vsTvpzaQ789EVE/CPM+PwAAAAAAAIA/Gl9jPZC6tD8OyUo/ssmVvSsDbL3o7QG+AAAAAAAAAACUdJRiLg=="
|
56 |
+
},
|
57 |
+
"_last_episode_starts": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAEBAQEBAQEBAQEBAQEBAQGUdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_original_obs": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAACinrPlwXbj6AKae9nDotvmm3W75qE04/AAAAAAAAAADF2f2+VsGFP0pGcr/s3lO/FSFNP3IniT4AAAAAAAAAAGbJzT1E9Yo/pGULPx8nfL+dURm+tmdIvgAAAAAAAAAA8wgXvkXA8j6sH4O+nb+Nv5rWBDs2ugm+AAAAAAAAAAD6oUC+eUgCPwZGw76RkYi/RSfLPtj8ND4AAAAAAAAAAJpBTz6XewA8uq7TPitcob99moy+d2M6vgAAgD8AAAAAcxGiPenFoD+MexM/nyAHv9lmCL4fNhS+AAAAAAAAAADNCAk+ZemNP3wbJT90JzW/niaevYHxj70AAAAAAAAAAFsqnr6I6Yw+kJC7vv7Vk7+sqpa85pNYPgAAAAAAAAAAwMT6PZGDbD/izmQ+83QnvyB+Cb0jMcC9AAAAAAAAAAAeB1G/NW6jPhGUur/Zzrm/42y/Pz7QPz8AAAAAAAAAALhIJb8R+JA/UNPGv0mlRr+8s6U/XhUKPwAAAAAAAAAAR/A7v2Dv0z93+Zy/Ig/7vsatIz/g/uM9AAAAAAAAAACmNEk+mmGXPyIgjT6JiDi/eSNcvv0gRr4AAAAAAAAAAGZJbj3j+X09x9qjvqmQpr9Qq0c/g7DmPgAAAAAAAIA/MzBDPVDwtD/xy0g/3Ig+vWcHUr0LTsS9AAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_episode_num": 4,
|
66 |
+
"use_sde": false,
|
67 |
+
"sde_sample_freq": -1,
|
68 |
+
"_current_progress_remaining": -0.04746317512274967,
|
69 |
+
"ep_info_buffer": {
|
70 |
+
":type:": "<class 'collections.deque'>",
|
71 |
+
":serialized:": "gASVHQEAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUl+WduruYMCUhpRSlIwBbJRLO4wBdJRHQFmzHj6vaDh1fZQoaAZoCWgPQwhSD9HoDjhgwJSGlFKUaBVLPWgWR0BZs7ZezD4ydX2UKGgGaAloD0MIMh8Q6ExHUcCUhpRSlGgVS0FoFkdAWbRVp9JBgXV9lChoBmgJaA9DCAg7xarBe2vAlIaUUpRoFUtKaBZHQFm1te2NNrV1ZS4="
|
72 |
+
},
|
73 |
+
"ep_success_buffer": {
|
74 |
+
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
76 |
+
},
|
77 |
+
"_n_updates": 0,
|
78 |
+
"buffer_size": 1000000,
|
79 |
+
"batch_size": 64,
|
80 |
+
"learning_starts": 50000,
|
81 |
+
"tau": 1.0,
|
82 |
+
"gamma": 0.9915197536085106,
|
83 |
+
"gradient_steps": 1,
|
84 |
+
"optimize_memory_usage": false,
|
85 |
+
"replay_buffer_class": {
|
86 |
+
":type:": "<class 'abc.ABCMeta'>",
|
87 |
+
":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
88 |
+
"__module__": "stable_baselines3.common.buffers",
|
89 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
90 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f02d1c9ff80>",
|
91 |
+
"add": "<function ReplayBuffer.add at 0x7f02d1ca6050>",
|
92 |
+
"sample": "<function ReplayBuffer.sample at 0x7f02d1ca60e0>",
|
93 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f02d1ca6170>",
|
94 |
+
"__abstractmethods__": "frozenset()",
|
95 |
+
"_abc_impl": "<_abc_data object at 0x7f02d1c993c0>"
|
96 |
+
},
|
97 |
+
"replay_buffer_kwargs": {},
|
98 |
+
"train_freq": {
|
99 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
100 |
+
":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
101 |
+
},
|
102 |
+
"actor": null,
|
103 |
+
"use_sde_at_warmup": false,
|
104 |
+
"exploration_initial_eps": 1.0,
|
105 |
+
"exploration_final_eps": 0.05,
|
106 |
+
"exploration_fraction": 0.1,
|
107 |
+
"target_update_interval": 625,
|
108 |
+
"_n_calls": 80,
|
109 |
+
"max_grad_norm": 10,
|
110 |
+
"exploration_rate": 0.05,
|
111 |
+
"exploration_schedule": {
|
112 |
+
":type:": "<class 'function'>",
|
113 |
+
":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
114 |
+
}
|
115 |
+
}
|
LunarLander-v2-DQN-optuna/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe020dda850f6a616e010422038f51673606a620db1a689b65e1c1f7d1833e55
|
3 |
+
size 623
|
LunarLander-v2-DQN-optuna/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be627f403c8dead06414a4b85277757626cd99171ca7aa1efa5d7d896249c1cb
|
3 |
+
size 44033
|
LunarLander-v2-DQN-optuna/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander-v2-DQN-optuna/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -140.18 +/- 41.67
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **DQN** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **DQN** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f02d1c528c0>", "_build": "<function DQNPolicy._build at 0x7f02d1c52950>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f02d1c529e0>", "forward": "<function DQNPolicy.forward at 0x7f02d1c52a70>", "_predict": "<function DQNPolicy._predict at 0x7f02d1c52b00>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f02d1c52b90>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f02d1c52c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f02d1cc2510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVRwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUaAiMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFNcAKFlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYolCwAkAAEV/7wbQPzqeCAL/NwkifbphzhtIgVn5WLf+1uQe15WVtrR+BUU0YYPkkKq99M4Sep6tFMe87EdWRKKOm/AsUPzM1RQcOeiq+d/IzI8HDo5mA/Xxtb5ceyHNNkPLUF+rXiOwoXWHbFa2Fi7vJIKgTSSXMQrj774NbG7S1S1v/MgzrJlc6wFKLYpe28iTgXyCb+d7md2l2e1zd1X29hXi7hOAzsfUiYgqeA+W0pIuZfHzFNKN7weiWVFGA18p+VxM1TiqVgBReXt6MS0+NWcqs464pxnzp+IcbASjKAgdx6qVzlj99kwhtprMWdOGfGzu8fwcX71fS1wzxJmZq/eUvzKW/Cjs9jElnb3miIy3gN0zPVYDKKgpX5xicoUnkLkcSnpxYePBSjjPUQ2n2Vm8Blb8tuSVGA4egFClF+PC2HB5J4Rsju7YRlWTZOHCtAtHb7V7spVeLHuCZFRjZ5oOTNNQ0MtScpxqa+qEKh2h0OQEDtsBuHjTRZbiD1WOrlCXyeRIabcaCs3ZFk8k5fT8/kh/gcIa41GHp7UWrRIL1rRHvcRm9jWufWTQLYZF6CKKC/Fx+KUyfDHEn2ruiTKDEbvso/p4+PjhRXMmlDwVfg6+mPCKgpxIZUQv+sP1YwFmWVy0uRaHDG0NKYhBnGV9h6rU+FIh57MIc2jAZgkCOjWImLIABNqId2XLKeXTIH2R3GDj2SB90iBm0neD0dRWOjD9gD7YPSHoUODIG0Ja4GjE6mzCCUN3rGeHiicgpJuJy00n1DevUgDzF1jCq7a99i/oPcMsBVv55YuDYNCOi8VhXISNwfJyw+UlNdhvm4TkBbJB0eGsvThtNqptud0QqoHXx6v8hM8Q6i4+8SYXQPbsy10WqmrOTRJNUdEEZaVHNGiOEHfQqdUQhd9jHGk5ItcnAjFIu4/M48tr6gA1qrppS6YkfzkdaWqJteU5WnyrrDMjwQBniscbaWq7aWKxAbLkxONoQgzY4+CWjHI48y4/fEGm2IK7vJ1PRHa8h/kK9OFgIAihS8mEV9+Xs0uZIRn2HyUdYtht4GI6l+DAtk+C9qwrjuPY8GDG67jQaYVj5d4tvMxIuKMQMZCHpEobUFzcRGi5dX5ffDnOC+LDJirchEMwsja0FNROKOLO++9tTsZ7vF1xiQig3zjf1mdHL5Y0zbyk3IwCAsvPVbOygVHOiP+xn8N1OmRjkPPkRr+6kzifq4iH+NxFP5/QF8MjjQoKDr9Fsro3lpRHVr82NnSDSpUmGrVnbMcCpEqJxwWMamoobE9CvcA1Comu39vKpjZ72AnlJOgV+8XYkMkFDWzWWUWXhCIl37XAFM4nZckUAoNYfngU/qCEygXxpVGzKtZSHL11dmig9mR6AqIrDeLhMLjgM1XEks0/zVulU3oGsU0rcLtZR2elUrEuioEvuH0e7OuQOK54wsuHs+HZUX8FsdJpTo9DFO/pQcS/6G5khHUfPLq4C0B3o81mW5dVFL1o6lTaA85wSAGfxNpwBKpmEUtv5m31tAhcNKNZBAlhsUwfaeQoOC0KOjFKeTGu7jgxGe1Zsn6FOX/qkUsJDAIO45fCrl/qPp8UXtD6VVN8o306dreiWM8UZpnF0iwrTLhVBxWZOmAMVCv1kzM8PkFCx6BwrF2emlqEr8y3l/3ik9YfbQuCIDqdlTUbMJOyIYa5MaphCLkl1+L8afScF8r44IV95p5/9FNnSlydj3SCQtG6Xp+eXNFZSxlgWBCMe87L6HPBsHSC3OnryFTlKLIN0CXgrQmZW4T7q/zovHLDrYvFCqnfZzPuQ6QvycMA7x/GqP1KO8H+r95hHVVAAKB4+Fo1xLwxvBFTSqMMPk8BR+WxE0myWt054blS4KfItTIA+5Ia+kBYr7oN32QvRA1j8Y7Jvl+4rVUCqOzbmwU15evosAFsjJ27fMvkY7r5zELjoRIOaNg1eMBmEkP+X/rMj2v4I9mtSsYbERjYOvJ1f5j/Kcz3iz6dadlMUNNLetuygJPg+gH9X9BYA/zTYaKz2mRJiedIDMhudae5ji6svoLq/bkphzU5sXwdO5t/yPcMlnq35/pW+Jdif1E4n0jMRv3Mz0VMuju6bg0p2QWxsHA/InhbhaJCNGlFV8yRNoyVgeH/Vy/FJFMOApUMsfQsmU40wMev6htYQBhe6xsAAzNH990mFs8O4aE8cA3SDByp10Apgi3LLoGS5f9VRVaDLeTfAsFkSS/mx+trWExxu+xUc/vXlV8DeKCQMbLmgp4fxVq8ZkNCaIaHGDnko6v2Bj9XcMUPC5oHL1GU60jaZZOyz4QYVXkRTTvIDqV2rqPQYiEKfxOM5ygkbRtNgM+7KgfTad7SOfpb3nzwScfr77YNxMm/gQg5uLEIlu6+YgHQ992WuHSe6YBe/M9uEi/VaryGFpnxgtrKNuN32ilyX4kEbDT+Dpv+jD3azh7qtrmbFxwyXRgOJ3yA5USNPru3vVjPN6q4h1WjDZlGvPzGea+/3YYtD15Lo2H5/RC46kGn7n6DEqCaRmu2VB0OJ5OJuuAfEJg2ZjKEJZdkMPfP3JI1SK6QVciavfOrSthZElpNUdmfll/CjLH9vK+PL7314gvJV+/8hhQ4WkUptxCOmKGZlgi9zNCFu74LFIYgGtpjMyQrav2HWLI42WUZDQfEmVwvAGc/WTocatC8yc+RqW5F+RTjGFpUr0ms3hX54tGwwkXXLU+javBMlSdnl39/bZZkCIBkXdqvfVE4T0lg0kKmZnl0DZ8ks8aTT2SbE/9pLq46Zw1vsSW6rmxdqzhJSQ5pahuc7pLoUQV82IZiecbDg+GmrfSPMdUNC2kx71nGvxjn9Jqs2g9hPNRSj3LWYIGYtTETPOWaHaYO7pvJpN53H7Ho70vXypNioE0MmbnzBwD18Ijxtcqe/OD+k9Np7NqYJ03TK3Ot1rwBCBbO6bGlGK0ryLCNRcD+WnOZNcTrUP/AQOvGefiYsDJP2AfsO+im87jtBy6yNaJLvRqwTdWThsQHZSw5y/6HySMacGJtslJBlkoj5lwINcAji07K8iiHn8HH1ctuye61UMLS23G0F7+pm91uDFNsH99D/KlPEW0oUd61Hnx4vKkWH+LTvJMjPwF0ZZLoMypfOTvmd2JUYVD/+gjU2ehYsRyvpDsa9rGfh7AtOEug7EdTPwqqZSkVcWRQWPHUzFEP89kwtSrL870lfQHHOuAS/94Tb5WRVv3I/r/7CL9J2GMyNssHgcuPPb5VInI9wrIOmh33bxO1JBWhQLznzstPwPTx1s3up/+pOv4vrXtYKFfTZdl5gWSY7F7QBhO7Zj/KDTBd4pR0lGKMA3Bvc5RNEAF1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 1280, "_total_timesteps": 1222, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1654990580.1301117, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAXfLqPsl0aT5sTKe9zZlIvreBMr6aDk4/AAAAAAAAAAA2gQG/oHWDP2Exgr+HxU2/Q59QP1q3iz4AAAAAAAAAABq92D0kDIg/YGcLP8V9gb9NViO+WWJIvgAAAAAAAAAAQOcZvvxa5j7XhYu+FLuJvx/Cs7tf3Bm+AAAAAAAAAADG1ES+F3T4PmXn1b7M3Ya/cmvPPhmnKj4AAAAAAAAAADosUz4hUaK8BqHBPjJSnb+FBIm+oCkTPgAAgD8AAAAAzYWtPYgunz9nZxA/Z48Nv7xHDb4GKMO9AAAAAAAAAADzrQ8+1f2LPw4KJz8Kuyq/5F+lvb58kL0AAAAAAAAAAH78n77cmH4+mpC7vhxAl7+WEgC8eJNYPgAAAAAAAAAAWj//PdqXaD/bzmQ+sUguvz22HL0PMcC9AAAAAAAAAACmwVS/kqWSPgK6ur/J472/RnnEP6fvST8AAAAAAAAAACxxKb9ivY4/U87Qvy+dSr82H6k/AcsIPwAAAAAAAAAAiQw/vxN20j/v25u/klgDv4aEJD8dOIY9AAAAAAAAAAAg7ks+hzuVP9AfjT6pXD+/gQtmvqogRr4AAAAAAAAAAAAmaT1Ptjg96vsTvpzaQ789EVE/CPM+PwAAAAAAAIA/Gl9jPZC6tD8OyUo/ssmVvSsDbL3o7QG+AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAEBAQEBAQEBAQEBAQEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAACinrPlwXbj6AKae9nDotvmm3W75qE04/AAAAAAAAAADF2f2+VsGFP0pGcr/s3lO/FSFNP3IniT4AAAAAAAAAAGbJzT1E9Yo/pGULPx8nfL+dURm+tmdIvgAAAAAAAAAA8wgXvkXA8j6sH4O+nb+Nv5rWBDs2ugm+AAAAAAAAAAD6oUC+eUgCPwZGw76RkYi/RSfLPtj8ND4AAAAAAAAAAJpBTz6XewA8uq7TPitcob99moy+d2M6vgAAgD8AAAAAcxGiPenFoD+MexM/nyAHv9lmCL4fNhS+AAAAAAAAAADNCAk+ZemNP3wbJT90JzW/niaevYHxj70AAAAAAAAAAFsqnr6I6Yw+kJC7vv7Vk7+sqpa85pNYPgAAAAAAAAAAwMT6PZGDbD/izmQ+83QnvyB+Cb0jMcC9AAAAAAAAAAAeB1G/NW6jPhGUur/Zzrm/42y/Pz7QPz8AAAAAAAAAALhIJb8R+JA/UNPGv0mlRr+8s6U/XhUKPwAAAAAAAAAAR/A7v2Dv0z93+Zy/Ig/7vsatIz/g/uM9AAAAAAAAAACmNEk+mmGXPyIgjT6JiDi/eSNcvv0gRr4AAAAAAAAAAGZJbj3j+X09x9qjvqmQpr9Qq0c/g7DmPgAAAAAAAIA/MzBDPVDwtD/xy0g/3Ig+vWcHUr0LTsS9AAAAAAAAAACUdJRiLg=="}, "_episode_num": 4, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04746317512274967, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHQEAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUl+WduruYMCUhpRSlIwBbJRLO4wBdJRHQFmzHj6vaDh1fZQoaAZoCWgPQwhSD9HoDjhgwJSGlFKUaBVLPWgWR0BZs7ZezD4ydX2UKGgGaAloD0MIMh8Q6ExHUcCUhpRSlGgVS0FoFkdAWbRVp9JBgXV9lChoBmgJaA9DCAg7xarBe2vAlIaUUpRoFUtKaBZHQFm1te2NNrV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 0, "buffer_size": 1000000, "batch_size": 64, "learning_starts": 50000, "tau": 1.0, "gamma": 0.9915197536085106, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f02d1c9ff80>", "add": "<function ReplayBuffer.add at 0x7f02d1ca6050>", "sample": "<function ReplayBuffer.sample at 0x7f02d1ca60e0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f02d1ca6170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f02d1c993c0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gASVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 625, "_n_calls": 80, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVYwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsESxNDLGQBfAAYAIgBawRyEIgAUwCIAmQBfAAYAIgAiAIYABQAiAEbABcAUwBkAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEtuQwYAAQwBBAKUjANlbmSUjAxlbmRfZnJhY3Rpb26UjAVzdGFydJSHlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpRoHilSlGgeKVKUh5R0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCR9lH2UKGgZaA6MDF9fcXVhbG5hbWVfX5SMG2dldF9saW5lYXJfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lChoC4wIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgwdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBqMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP6mZmZmZmZqFlFKUaDhHP7mZmZmZmZqFlFKUaDhHP/AAAAAAAACFlFKUh5SMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43ca6ea90fe2a231a76359b5004105aa80912d4ea17045aaf0f87722a5ef0eec
|
3 |
+
size 155783
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -140.17690671300517, "std_reward": 41.6681259557473, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-11T23:36:36.064564"}
|