update readme
Browse files
README.md
CHANGED
@@ -21,109 +21,34 @@ This llama model was trained 2x faster with [Unsloth](https://github.com/unsloth
|
|
21 |
|
22 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
23 |
|
24 |
-
|
25 |
-
!pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
26 |
-
!pip install --upgrade torch
|
27 |
-
!pip install --upgrade xformers
|
28 |
-
!pip install ipywidgets --upgrade
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
|
34 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
35 |
from unsloth import FastLanguageModel
|
36 |
import torch
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
dtype = None
|
39 |
load_in_4bit = True
|
40 |
|
41 |
-
model_id = "llm-jp/llm-jp-3-13b"
|
42 |
-
new_model_id = "llm-jp-3-13b-finetune-2"
|
43 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
44 |
-
model_name=
|
45 |
-
dtype=dtype,
|
46 |
-
load_in_4bit=load_in_4bit,
|
47 |
-
trust_remote_code=True,
|
48 |
-
)
|
49 |
-
|
50 |
-
model = FastLanguageModel.get_peft_model(
|
51 |
-
model,
|
52 |
-
r = 32,
|
53 |
-
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
54 |
-
"gate_proj", "up_proj", "down_proj",],
|
55 |
-
lora_alpha = 32,
|
56 |
-
lora_dropout = 0.05,
|
57 |
-
bias = "none",
|
58 |
-
use_gradient_checkpointing = "unsloth",
|
59 |
-
random_state = 3407,
|
60 |
-
use_rslora = False,
|
61 |
-
loftq_config = None,
|
62 |
-
max_seq_length = max_seq_length,
|
63 |
-
)
|
64 |
-
|
65 |
-
HF_TOKEN = "" #@param {type:"string"}
|
66 |
-
|
67 |
-
from datasets import load_dataset
|
68 |
-
dataset = load_dataset("json", data_files="/content/ichikara-instruction-003-001-1.json")
|
69 |
-
|
70 |
-
prompt = """### 指示
|
71 |
-
{}
|
72 |
-
### 回答
|
73 |
-
{}"""
|
74 |
-
|
75 |
-
|
76 |
-
"""
|
77 |
-
formatting_prompts_func: 各データをプロンプトに合わせた形式に合わせる
|
78 |
-
"""
|
79 |
-
EOS_TOKEN = tokenizer.eos_token
|
80 |
-
def formatting_prompts_func(examples):
|
81 |
-
input = examples["text"]
|
82 |
-
output = examples["output"]
|
83 |
-
text = prompt.format(input, output) + EOS_TOKEN
|
84 |
-
return { "formatted_text" : text, }
|
85 |
-
pass
|
86 |
-
|
87 |
-
dataset = dataset.map(
|
88 |
-
formatting_prompts_func,
|
89 |
-
num_proc= 4,
|
90 |
-
)
|
91 |
-
|
92 |
-
from trl import SFTTrainer
|
93 |
-
from transformers import TrainingArguments
|
94 |
-
from unsloth import is_bfloat16_supported
|
95 |
-
|
96 |
-
trainer = SFTTrainer(
|
97 |
-
model = model,
|
98 |
-
tokenizer = tokenizer,
|
99 |
-
train_dataset=dataset["train"],
|
100 |
max_seq_length = max_seq_length,
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
per_device_train_batch_size = 2,
|
105 |
-
gradient_accumulation_steps = 4,
|
106 |
-
num_train_epochs = 1,
|
107 |
-
logging_steps = 10,
|
108 |
-
warmup_steps = 10,
|
109 |
-
save_steps=100,
|
110 |
-
save_total_limit=2,
|
111 |
-
max_steps=-1,
|
112 |
-
learning_rate = 2e-4,
|
113 |
-
fp16 = not is_bfloat16_supported(),
|
114 |
-
bf16 = is_bfloat16_supported(),
|
115 |
-
group_by_length=True,
|
116 |
-
seed = 3407,
|
117 |
-
output_dir = "outputs",
|
118 |
-
report_to = "none",
|
119 |
-
),
|
120 |
)
|
|
|
121 |
|
122 |
-
trainer_stats = trainer.train()
|
123 |
-
|
124 |
-
import json
|
125 |
datasets = []
|
126 |
-
with open("
|
127 |
item = ""
|
128 |
for line in f:
|
129 |
line = line.strip()
|
@@ -134,22 +59,83 @@ with open("/content/elyza-tasks-100-TV_0.jsonl", "r") as f:
|
|
134 |
|
135 |
from tqdm import tqdm
|
136 |
|
137 |
-
FastLanguageModel.for_inference(model)
|
138 |
-
|
139 |
results = []
|
140 |
for dt in tqdm(datasets):
|
141 |
input = dt["input"]
|
142 |
-
|
143 |
prompt = f"""### 指示\n{input}\n### 回答\n"""
|
144 |
-
|
145 |
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
|
146 |
-
|
147 |
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
|
148 |
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
|
149 |
-
|
150 |
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
|
151 |
|
152 |
-
with open(f"
|
153 |
for result in results:
|
154 |
json.dump(result, f, ensure_ascii=False)
|
155 |
f.write('\n')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
23 |
|
24 |
+
```python
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
%%capture
|
27 |
+
!pip install unsloth
|
28 |
+
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
29 |
|
|
|
30 |
from unsloth import FastLanguageModel
|
31 |
import torch
|
32 |
+
import json
|
33 |
+
|
34 |
+
model_name = "84basi/llm-jp-3-13b-finetune-2.1"
|
35 |
+
token = "Hugging Face Token" #@param {type:"string"}
|
36 |
+
|
37 |
+
max_seq_length = 2048
|
38 |
dtype = None
|
39 |
load_in_4bit = True
|
40 |
|
|
|
|
|
41 |
model, tokenizer = FastLanguageModel.from_pretrained(
|
42 |
+
model_name = model_name,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
max_seq_length = max_seq_length,
|
44 |
+
dtype = dtype,
|
45 |
+
load_in_4bit = load_in_4bit,
|
46 |
+
token = token,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
+
FastLanguageModel.for_inference(model)
|
49 |
|
|
|
|
|
|
|
50 |
datasets = []
|
51 |
+
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
|
52 |
item = ""
|
53 |
for line in f:
|
54 |
line = line.strip()
|
|
|
59 |
|
60 |
from tqdm import tqdm
|
61 |
|
|
|
|
|
62 |
results = []
|
63 |
for dt in tqdm(datasets):
|
64 |
input = dt["input"]
|
|
|
65 |
prompt = f"""### 指示\n{input}\n### 回答\n"""
|
|
|
66 |
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
|
|
|
67 |
outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
|
68 |
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
|
|
|
69 |
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
|
70 |
|
71 |
+
with open(f"/content/llm-jp-3-13b-finetune-2.1_output-2.jsonl", 'w', encoding='utf-8') as f:
|
72 |
for result in results:
|
73 |
json.dump(result, f, ensure_ascii=False)
|
74 |
f.write('\n')
|
75 |
+
|
76 |
+
!pip install python-docx
|
77 |
+
|
78 |
+
import json
|
79 |
+
|
80 |
+
from docx import Document # pip install python-docxでインストールする
|
81 |
+
from docx.shared import Inches, Pt, RGBColor
|
82 |
+
from docx.enum.text import WD_ALIGN_PARAGRAPH
|
83 |
+
|
84 |
+
|
85 |
+
def read_jsonl_data(jsonl_path):
|
86 |
+
"""
|
87 |
+
提出用jsonlを読み、json形式で返す
|
88 |
+
|
89 |
+
Args:
|
90 |
+
jsonl_path (str): 提出用jsonlへのパス
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
jsonデータ (list of dict)
|
94 |
+
"""
|
95 |
+
results = []
|
96 |
+
with open(jsonl_path, 'r', encoding='utf-8') as f:
|
97 |
+
for line in f:
|
98 |
+
line = line.strip()
|
99 |
+
if line:
|
100 |
+
try:
|
101 |
+
results.append(json.loads(line))
|
102 |
+
except json.JSONDecodeError as e:
|
103 |
+
print(f"JSONデコードエラー(行内容を確認してください): {e}")
|
104 |
+
return results
|
105 |
+
|
106 |
+
|
107 |
+
def json_to_word(json_data, output_file):
|
108 |
+
"""
|
109 |
+
JSONデータをWord文書に変換する
|
110 |
+
|
111 |
+
Args:
|
112 |
+
json_data (list of dict): JSONデータのリスト
|
113 |
+
output_file (str): 出力するWordファイルの名前
|
114 |
+
"""
|
115 |
+
doc = Document()
|
116 |
+
|
117 |
+
title = doc.add_heading('LLM Output Analysis', 0)
|
118 |
+
title.alignment = WD_ALIGN_PARAGRAPH.CENTER
|
119 |
+
|
120 |
+
for item in json_data:
|
121 |
+
task_id = item.get("task_id", "No Task ID")
|
122 |
+
doc.add_heading(f'Task ID: {task_id}', level=1)
|
123 |
+
|
124 |
+
doc.add_heading('Input:', level=2)
|
125 |
+
input_text = item.get("input", "No Input")
|
126 |
+
input_para = doc.add_paragraph()
|
127 |
+
input_para.add_run(input_text).bold = False
|
128 |
+
|
129 |
+
doc.add_heading('Output:', level=2)
|
130 |
+
output_text = item.get("output", "No Output")
|
131 |
+
output_para = doc.add_paragraph()
|
132 |
+
output_para.add_run(output_text).bold = False
|
133 |
+
|
134 |
+
doc.add_paragraph('=' * 50)
|
135 |
+
doc.save(output_file)
|
136 |
+
|
137 |
+
jsonl_path = '/content/llm-jp-3-13b-finetune-2.1_output-2.jsonl'
|
138 |
+
output_file = '/content/llm-jp-3-13b-finetune-2.1_output-2.docx'
|
139 |
+
jsonl_data = read_jsonl_data(jsonl_path)
|
140 |
+
json_to_word(jsonl_data, output_file)
|
141 |
+
```
|