--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** 84basi - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) ```python %%capture !pip install unsloth !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" from unsloth import FastLanguageModel import torch import json model_name = "84basi/llm-jp-3-13b-finetune-2.1" token = "Hugging Face Token" #@param {type:"string"} max_seq_length = 2048 dtype = None load_in_4bit = True model, tokenizer = FastLanguageModel.from_pretrained( model_name = model_name, max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, token = token, ) FastLanguageModel.for_inference(model) datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" from tqdm import tqdm results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) with open(f"/content/llm-jp-3-13b-finetune-2.1_output-2.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') !pip install python-docx import json from docx import Document # pip install python-docxでインストールする from docx.shared import Inches, Pt, RGBColor from docx.enum.text import WD_ALIGN_PARAGRAPH def read_jsonl_data(jsonl_path): """ 提出用jsonlを読み、json形式で返す Args: jsonl_path (str): 提出用jsonlへのパス Returns: jsonデータ (list of dict) """ results = [] with open(jsonl_path, 'r', encoding='utf-8') as f: for line in f: line = line.strip() if line: try: results.append(json.loads(line)) except json.JSONDecodeError as e: print(f"JSONデコードエラー(行内容を確認してください): {e}") return results def json_to_word(json_data, output_file): """ JSONデータをWord文書に変換する Args: json_data (list of dict): JSONデータのリスト output_file (str): 出力するWordファイルの名前 """ doc = Document() title = doc.add_heading('LLM Output Analysis', 0) title.alignment = WD_ALIGN_PARAGRAPH.CENTER for item in json_data: task_id = item.get("task_id", "No Task ID") doc.add_heading(f'Task ID: {task_id}', level=1) doc.add_heading('Input:', level=2) input_text = item.get("input", "No Input") input_para = doc.add_paragraph() input_para.add_run(input_text).bold = False doc.add_heading('Output:', level=2) output_text = item.get("output", "No Output") output_para = doc.add_paragraph() output_para.add_run(output_text).bold = False doc.add_paragraph('=' * 50) doc.save(output_file) jsonl_path = '/content/llm-jp-3-13b-finetune-2.1_output-2.jsonl' output_file = '/content/llm-jp-3-13b-finetune-2.1_output-2.docx' jsonl_data = read_jsonl_data(jsonl_path) json_to_word(jsonl_data, output_file) ```