--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl language: - en datasets: - elyza/ELYZA-tasks-100 --- # Uploaded model - **Developed by:** 84basi - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) ## Readme ### 事前準備 - token にご自身の token を指定して下さい - L4 GPU を選択して下さい - 事前に elyza-tasks-100-TV_0.jsonl を Google Colab にアップロードして下さい - 正しく実行が完了すると `/content/llm-jp-3-13b-it-7.0_output.jsonl` が出力されます ```python token = "" # token model_id = "llm-jp-3-13b-it-7.0" # llm-jp-3-13b-it-4.17, gemma-2-27b-it-4.19 model_name = "84basi/" + model_id answer_json_file = "./elyza-tasks-100-TV_0.jsonl" output_json_file = "./" + model_id + "_output.jsonl" !pip install unsloth -q !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" -q from unsloth import FastLanguageModel from peft import PeftModel import torch import json max_seq_length = 2048 dtype = None load_in_4bit = True model, tokenizer = FastLanguageModel.from_pretrained( model_name = model_name, max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, token = token, trust_remote_code=True, ) # 推論モードに切り替え FastLanguageModel.for_inference(model) # データセットの読み込み。 # omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。 datasets = [] with open(answer_json_file, "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # 推論 from tqdm import tqdm results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) with open(output_json_file, 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ```