File size: 5,728 Bytes
77aed32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# %%
import torch
# GPUが使用可能か判断
if torch.cuda.is_available():
    print('gpu is available')
else:
    raise Exception('gpu is NOT available')

# %%
from datasets import load_dataset, DatasetDict
from transformers import AutoTokenizer
from transformers import AutoModelForSequenceClassification
from transformers import TrainingArguments
from transformers import Trainer
from sklearn.metrics import accuracy_score, f1_score
import numpy as np
import pandas as pd
import torch
import random

# %%
from pprint import pprint
from datasets import load_dataset

# Hugging Face Hub上のllm-book/wrime-sentimentのリポジトリから
# データを読み込む
train_dataset = load_dataset("llm-book/wrime-sentiment", split="train", remove_neutral=False)
valid_dataset = load_dataset("llm-book/wrime-sentiment", split="validation", remove_neutral=False)
# pprintで見やすく表示する
pprint(train_dataset)
pprint(valid_dataset)

# %%
# トークナイザのロード
model_name = "cl-tohoku/bert-base-japanese-whole-word-masking"
tokenizer = AutoTokenizer.from_pretrained(model_name)

# %%
# トークナイズ処理
def preprocess_text(batch):
    encoded_batch = tokenizer(batch['sentence'], max_length=512)
    encoded_batch['labels'] = batch['label']
    return encoded_batch

encoded_train_dataset = train_dataset.map(
    preprocess_text,
    remove_columns=train_dataset.column_names,
)
encoded_valid_dataset = valid_dataset.map(
    preprocess_text,
    remove_columns=valid_dataset.column_names,
)

# ミニバッチ構築
from transformers import DataCollatorWithPadding

data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

# %%
# モデルの準備
from transformers import AutoModelForSequenceClassification

class_label = train_dataset.features["label"]
label2id = {label: id for id, label in enumerate(class_label.names)}
id2label = {id: label for id, label in enumerate(class_label.names)}
model = AutoModelForSequenceClassification.from_pretrained(
    model_name,
    num_labels=class_label.num_classes,
    label2id=label2id,  # ラベル名からIDへの対応を指定
    id2label=id2label,  # IDからラベル名への対応を指定
)
print(type(model).__name__)

# %%
# 訓練の準備
from transformers import TrainingArguments
# 保存ディレクトリ
save_dir = f'bert-finetuned-wrime-base'

training_args = TrainingArguments(
    output_dir=save_dir,  # 結果の保存フォルダ
    per_device_train_batch_size=32,  # 訓練時のバッチサイズ
    per_device_eval_batch_size=32,  # 評価時のバッチサイズ
    learning_rate=2e-5,  # 学習率
    lr_scheduler_type="constant",  # 学習率スケジューラの種類
    warmup_ratio=0.1,  # 学習率のウォームアップの長さを指定
    num_train_epochs=100,  # エポック数
    save_strategy="epoch",  # チェックポイントの保存タイミング
    logging_strategy="epoch",  # ロギングのタイミング
    evaluation_strategy="epoch",  # 検証セットによる評価のタイミング
    load_best_model_at_end=True,  # 訓練後に開発セットで最良のモデルをロード
    metric_for_best_model="accuracy",  # 最良のモデルを決定する評価指標
    fp16=True,  # 自動混合精度演算の有効化
)

# %%
# メトリクスの定義
def compute_metrics(pred):
    labels = pred.label_ids
    preds = pred.predictions.argmax(-1)
    f1 = f1_score(labels, preds, average="weighted")
    acc = accuracy_score(labels, preds)
    return {"accuracy": acc, "f1": f1}

# %%
# 訓練の実行
from transformers import Trainer
from transformers import EarlyStoppingCallback

trainer = Trainer(
    model=model,
    train_dataset=encoded_train_dataset,
    eval_dataset=encoded_valid_dataset,
    data_collator=data_collator,
    args=training_args,
    compute_metrics=compute_metrics,
    callbacks=[EarlyStoppingCallback(early_stopping_patience=3)],
)
trainer.train()

# %%
# モデルの保存
trainer.save_model(save_dir)
tokenizer.save_pretrained(save_dir)
# 履歴の保存
history_df = pd.DataFrame(trainer.state.log_history)
history_df.to_csv('base_line/wrime_baseline_history.csv')

# %%
import matplotlib.pyplot as plt

def show_graph(df, suptitle, output='output.png'):
    suptitle_size = 23
    graph_title_size = 20
    legend_size = 18
    ticks_size = 13
    # 学習曲線
    fig = plt.figure(figsize=(20, 5))
    plt.suptitle(suptitle, fontsize=suptitle_size)
    # Train Loss
    plt.subplot(131)
    plt.title('Train Loss', fontsize=graph_title_size)
    plt.plot(df['loss'].dropna(), label='train')
    plt.legend(fontsize=legend_size)
    plt.yticks(fontsize=ticks_size)
    # Validation Loss
    plt.subplot(132)
    # reg_str = f'$y={round(regression.coef_[0],5)}*x+{round(regression.intercept_,3)}$'
    plt.title(f'Val Loss', fontsize=graph_title_size)
    y = df['eval_loss'].dropna().values
    x = np.arange(len(y)).reshape(-1, 1)
    # pred = regression.coef_ * x.ravel() + regression.intercept_  # 線形回帰直線
    plt.plot(y, color='tab:orange', label='val')
    # plt.plot(pred, color='green', label='pred')
    plt.legend(fontsize=legend_size)
    # plt.xlabel(reg_str, fontsize=ticks_size)
    plt.yticks(fontsize=ticks_size)
    # Accuracy/F1
    plt.subplot(133)
    plt.title('eval Accuracy/F1', fontsize=graph_title_size)
    plt.plot(df['eval_accuracy'].dropna(), label='accuracy')
    plt.plot(df['eval_f1'].dropna(), label='F1')
    plt.legend(fontsize=legend_size)
    plt.yticks(fontsize=ticks_size)
    plt.tight_layout()
    # plt.show()
    plt.savefig(output)

# %%
# 結果を表示
suptitle = 'batch:32, lr:2e-5, type:constant'
show_graph(history_df, suptitle, 'base_line/wrime_baseline_output.png')