File size: 1,944 Bytes
a87c8fd
 
 
 
29dcae7
a87c8fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
deeca0d
a87c8fd
1ccf3d2
 
6a695a1
1ccf3d2
6a695a1
a87c8fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a695a1
a87c8fd
 
 
 
 
1ccf3d2
a87c8fd
 
 
 
 
1ccf3d2
 
 
 
 
a87c8fd
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
tags:
- generated_from_trainer
base_model: neuralmind/bert-base-portuguese-cased
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: hate_BERTimbau_v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hate_BERTimbau_v1

This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1389
- Precision: 0.7715
- Recall: 0.7690
- F1: 0.7700
- Accuracy: 0.7690

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.5196        | 1.0   | 284  | 0.4981          | 0.7509    | 0.7566 | 0.7482 | 0.7566   |
| 0.4019        | 2.0   | 568  | 0.4680          | 0.7923    | 0.7813 | 0.7843 | 0.7813   |
| 0.2706        | 3.0   | 852  | 0.6745          | 0.7525    | 0.7531 | 0.7355 | 0.7531   |
| 0.1601        | 4.0   | 1136 | 0.9990          | 0.7632    | 0.7672 | 0.7573 | 0.7672   |
| 0.0975        | 5.0   | 1420 | 1.1389          | 0.7715    | 0.7690 | 0.7700 | 0.7690   |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1