Barnabiii commited on
Commit
260cffa
·
verified ·
1 Parent(s): decbbda

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +42 -34
README.md CHANGED
@@ -1,40 +1,48 @@
1
- <h1 style="border-bottom: 2px solid black; font-size: 100px;" align="center"> SwinUNETR </h1>
2
 
3
- _Trained by Margerie Huet Dastarac ._ <br>
4
- _Training date: November2023 ._
5
 
6
- ## 1. Task Description
7
- Segmentation of the body on the CT scan on a datasheet of 60 oropharyngeal patients. This model can be used to clean CT scans by setting voxels value outside of the body contour to air, a typical preprocessing step for other networks.
8
 
9
- ## 2. Model
10
- ### 2.1. Architecture
11
 
12
  ![image/png]( https://cdn-uploads.huggingface.co/production/uploads/65c9dbefd6cbf9dfed67367e/7X1GxxIT2LlpPBdR_tCzt.png )
13
 
14
- _Figure 1: SwinUNETR architecture_
15
- ### 2.2. Input
16
- + CT
17
- ### 2.3. Output
18
- + BODY
19
- ### 2.4 Training details
20
- + Number of epoch: 300
21
- + Loss function: Dice loss
22
- + Optimizer: Adam
23
- + Learning Rate: 3e-4
24
- + Dropout: No
25
- + Patch size in voxels: (128,128,128)
26
- + Data augmentation used:
27
- - RandSpatialCropd
28
- - RandFlipd axis=0
29
- - RandFlipd axis=1
30
- - RandFlipd axis=2
31
- - NormalizeIntensityd
32
- - RandScaleIntensityd factors=0.1 prob=1.0
33
- ## 3. Dataset
34
- + Location: Head and neck, oropharynx
35
- + Training set size: 60
36
- + Data type: CT scan and body contours
37
- + Resolution in mm: 3x3x3
38
- + Preprocessing
39
- ## Performance
40
- + TBD
 
 
 
 
 
 
 
 
 
1
+ <h1 style="border-bottom: 2px solid black; font-size: 100px;" align="center"> HDUNet </h1>
2
 
3
+ _Trained by Margerie Huet Dastarac ._ <br>
4
+ _Training date: 05/05/2023 ._
5
 
6
+ ## 1. Task Description
7
+ Dose prediction
8
 
9
+ ## 2. Model
10
+ ### 2.1. Architecture
11
 
12
  ![image/png]( https://cdn-uploads.huggingface.co/production/uploads/65c9dbefd6cbf9dfed67367e/7X1GxxIT2LlpPBdR_tCzt.png )
13
 
14
+ _Figure 1: HDUNet architecture_
15
+ ### 2.2. Input
16
+ <ul>
17
+ <li> CT</li>
18
+ <li> Target volumes</li>
19
+ <li> Organ at risks masks</li>
20
+ </ul>
21
+ ### 2.3. Output
22
+ <ul>
23
+ <li> DOSE</li>
24
+ </ul>
25
+ ### 2.4 Training details
26
+ <ul>
27
+ <li> Number of epoch: 400 </li>
28
+ <li> Loss function: MSE loss </li>
29
+ <li> Optimizer: AdamW </li>
30
+ <li> Learning Rate: 0.0001 </li>
31
+ <li> Dropout: No </li>
32
+ <li> Patch size in voxels: (128,128,128) </li>
33
+ <li> Data augmentation used:
34
+ <ul>
35
+ <li> RandCrop</li>
36
+ <li> RandSpatialCropd</li>
37
+ <li> NormalizedIntensityd</li>
38
+ </ul>
39
+ </li>
40
+ </ul>
41
+ ## 3. Dataset
42
+ <ul>
43
+ <li> Location: Oropharynx </li>
44
+ <li> Training set size: 57 </li>
45
+ <li> Resolution in mm: 3x3x3 </li>
46
+ </ul>
47
+ ## Performance
48
+ + TBD