Barnabiii commited on
Commit
8194a13
·
verified ·
1 Parent(s): 8869d28

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -16
README.md CHANGED
@@ -1,52 +1,55 @@
1
- <h1 style="border-bottom: 2px solid black; font-size: 100px;" align="center"> HDUNet </h1>
2
 
3
  _Trained by Margerie Huet Dastarac ._ <br>
4
- _Training date: 05/05/2023 ._
5
 
6
  ## 1. Task Description
7
- Dose prediction
8
 
9
  ## 2. Model
10
  ### 2.1. Architecture
11
 
12
  ![image/png]( https://cdn-uploads.huggingface.co/production/uploads/65c9dbefd6cbf9dfed67367e/7X1GxxIT2LlpPBdR_tCzt.png )
13
 
14
- _Figure 1: HDUNet architecture_
 
15
  ### 2.2. Input
16
  <ul>
17
  <li> CT</li>
18
- <li> Target volumes</li>
19
- <li> Organ at risks masks</li>
20
  </ul>
21
 
22
  ### 2.3. Output
23
  <ul>
24
- <li> DOSE</li>
25
  </ul>
26
 
27
  ### 2.4 Training details
28
  <ul>
29
- <li> Number of epoch: 400 </li>
30
- <li> Loss function: MSE loss </li>
31
- <li> Optimizer: AdamW </li>
32
- <li> Learning Rate: 0.0001 </li>
33
  <li> Dropout: No </li>
34
  <li> Patch size in voxels: (128,128,128) </li>
35
  <li> Data augmentation used:
36
  <ul>
37
- <li> RandCrop</li>
38
  <li> RandSpatialCropd</li>
39
- <li> NormalizedIntensityd</li>
 
 
 
 
 
40
  </ul>
41
  </li>
42
  </ul>
43
 
44
  ## 3. Dataset
45
  <ul>
46
- <li> Location: Oropharynx </li>
47
- <li> Training set size: 57 </li>
48
  <li> Resolution in mm: 3x3x3 </li>
49
  </ul>
50
 
51
  ## Performance
52
- + TBD
 
1
+ <h1 style="border-bottom: 2px solid black; font-size: 100px;" align="center"> SwinUNETR </h1>
2
 
3
  _Trained by Margerie Huet Dastarac ._ <br>
4
+ _Training date: November 2023 ._
5
 
6
  ## 1. Task Description
7
+ Segmentation of the body on the CT scan on a dataset of 60 oropharyngeal patients. This model can be used to clean CT scans by setting voxels value outside of the body contour to air, a typical preprocessing step for other networks.
8
 
9
  ## 2. Model
10
  ### 2.1. Architecture
11
 
12
  ![image/png]( https://cdn-uploads.huggingface.co/production/uploads/65c9dbefd6cbf9dfed67367e/7X1GxxIT2LlpPBdR_tCzt.png )
13
 
14
+ _Figure 1: SwinUNETR architecture_
15
+
16
  ### 2.2. Input
17
  <ul>
18
  <li> CT</li>
 
 
19
  </ul>
20
 
21
  ### 2.3. Output
22
  <ul>
23
+ <li> BODY</li>
24
  </ul>
25
 
26
  ### 2.4 Training details
27
  <ul>
28
+ <li> Number of epoch: 300 </li>
29
+ <li> Loss function: Dice loss </li>
30
+ <li> Optimizer: Adam </li>
31
+ <li> Learning Rate: 3e-4 </li>
32
  <li> Dropout: No </li>
33
  <li> Patch size in voxels: (128,128,128) </li>
34
  <li> Data augmentation used:
35
  <ul>
 
36
  <li> RandSpatialCropd</li>
37
+ <li> RandFlipd axis:0</li>
38
+ <li> RandFlipd axis:1</li>
39
+ <li> RandFlipd axis:2</li>
40
+ <li> NormalizeIntensityd</li>
41
+ <li> RandScaleIntensityd factors:0.1 prob:1.0</li>
42
+ <li> RandShiftIntensityd, offsets:0.1, prob:1.0</li>
43
  </ul>
44
  </li>
45
  </ul>
46
 
47
  ## 3. Dataset
48
  <ul>
49
+ <li> Location: Head and neck, oropharynx </li>
50
+ <li> Training set size: 60 </li>
51
  <li> Resolution in mm: 3x3x3 </li>
52
  </ul>
53
 
54
  ## Performance
55
+ + TBD