Update README.md
Browse files
README.md
CHANGED
@@ -1,52 +1,55 @@
|
|
1 |
-
<h1 style="border-bottom: 2px solid black; font-size: 100px;" align="center">
|
2 |
|
3 |
_Trained by Margerie Huet Dastarac ._ <br>
|
4 |
-
_Training date:
|
5 |
|
6 |
## 1. Task Description
|
7 |
-
|
8 |
|
9 |
## 2. Model
|
10 |
### 2.1. Architecture
|
11 |
|
12 |
![image/png]( https://cdn-uploads.huggingface.co/production/uploads/65c9dbefd6cbf9dfed67367e/7X1GxxIT2LlpPBdR_tCzt.png )
|
13 |
|
14 |
-
_Figure 1:
|
|
|
15 |
### 2.2. Input
|
16 |
<ul>
|
17 |
<li> CT</li>
|
18 |
-
<li> Target volumes</li>
|
19 |
-
<li> Organ at risks masks</li>
|
20 |
</ul>
|
21 |
|
22 |
### 2.3. Output
|
23 |
<ul>
|
24 |
-
<li>
|
25 |
</ul>
|
26 |
|
27 |
### 2.4 Training details
|
28 |
<ul>
|
29 |
-
<li> Number of epoch:
|
30 |
-
<li> Loss function:
|
31 |
-
<li> Optimizer:
|
32 |
-
<li> Learning Rate:
|
33 |
<li> Dropout: No </li>
|
34 |
<li> Patch size in voxels: (128,128,128) </li>
|
35 |
<li> Data augmentation used:
|
36 |
<ul>
|
37 |
-
<li> RandCrop</li>
|
38 |
<li> RandSpatialCropd</li>
|
39 |
-
<li>
|
|
|
|
|
|
|
|
|
|
|
40 |
</ul>
|
41 |
</li>
|
42 |
</ul>
|
43 |
|
44 |
## 3. Dataset
|
45 |
<ul>
|
46 |
-
<li> Location:
|
47 |
-
<li> Training set size:
|
48 |
<li> Resolution in mm: 3x3x3 </li>
|
49 |
</ul>
|
50 |
|
51 |
## Performance
|
52 |
-
+ TBD
|
|
|
1 |
+
<h1 style="border-bottom: 2px solid black; font-size: 100px;" align="center"> SwinUNETR </h1>
|
2 |
|
3 |
_Trained by Margerie Huet Dastarac ._ <br>
|
4 |
+
_Training date: November 2023 ._
|
5 |
|
6 |
## 1. Task Description
|
7 |
+
Segmentation of the body on the CT scan on a dataset of 60 oropharyngeal patients. This model can be used to clean CT scans by setting voxels value outside of the body contour to air, a typical preprocessing step for other networks.
|
8 |
|
9 |
## 2. Model
|
10 |
### 2.1. Architecture
|
11 |
|
12 |
![image/png]( https://cdn-uploads.huggingface.co/production/uploads/65c9dbefd6cbf9dfed67367e/7X1GxxIT2LlpPBdR_tCzt.png )
|
13 |
|
14 |
+
_Figure 1: SwinUNETR architecture_
|
15 |
+
|
16 |
### 2.2. Input
|
17 |
<ul>
|
18 |
<li> CT</li>
|
|
|
|
|
19 |
</ul>
|
20 |
|
21 |
### 2.3. Output
|
22 |
<ul>
|
23 |
+
<li> BODY</li>
|
24 |
</ul>
|
25 |
|
26 |
### 2.4 Training details
|
27 |
<ul>
|
28 |
+
<li> Number of epoch: 300 </li>
|
29 |
+
<li> Loss function: Dice loss </li>
|
30 |
+
<li> Optimizer: Adam </li>
|
31 |
+
<li> Learning Rate: 3e-4 </li>
|
32 |
<li> Dropout: No </li>
|
33 |
<li> Patch size in voxels: (128,128,128) </li>
|
34 |
<li> Data augmentation used:
|
35 |
<ul>
|
|
|
36 |
<li> RandSpatialCropd</li>
|
37 |
+
<li> RandFlipd axis:0</li>
|
38 |
+
<li> RandFlipd axis:1</li>
|
39 |
+
<li> RandFlipd axis:2</li>
|
40 |
+
<li> NormalizeIntensityd</li>
|
41 |
+
<li> RandScaleIntensityd factors:0.1 prob:1.0</li>
|
42 |
+
<li> RandShiftIntensityd, offsets:0.1, prob:1.0</li>
|
43 |
</ul>
|
44 |
</li>
|
45 |
</ul>
|
46 |
|
47 |
## 3. Dataset
|
48 |
<ul>
|
49 |
+
<li> Location: Head and neck, oropharynx </li>
|
50 |
+
<li> Training set size: 60 </li>
|
51 |
<li> Resolution in mm: 3x3x3 </li>
|
52 |
</ul>
|
53 |
|
54 |
## Performance
|
55 |
+
+ TBD
|