SwinUNETR

_Trained by Margerie Huet Dastarac ._
_Training date: November2023 ._ ## 1. Task Description Segmentation of the body on the CT scan on a datasheet of 60 oropharyngeal patients. This model can be used to clean CT scans by setting voxels value outside of the body contour to air, a typical preprocessing step for other networks. ## 2. Model ### 2.1. Architecture ![image/png]( https://cdn-uploads.huggingface.co/production/uploads/65c9dbefd6cbf9dfed67367e/7X1GxxIT2LlpPBdR_tCzt.png ) _Figure 1: SwinUNETR architecture_ ### 2.2. Input + CT ### 2.3. Output + BODY ### 2.4 Training details + Number of epoch: 300 + Loss function: Dice loss + Optimizer: Adam + Learning Rate: 3e-4 + Dropout: No + Patch size in voxels: (128,128,128) + Data augmentation used: - RandSpatialCropd - RandFlipd axis=0 - RandFlipd axis=1 - RandFlipd axis=2 - NormalizeIntensityd - RandScaleIntensityd factors=0.1 prob=1.0 ## 3. Dataset + Location: Head and neck, oropharynx + Training set size: 60 + Data type: CT scan and body contours + Resolution in mm: 3x3x3 + Preprocessing ## Performance + TBD