File size: 29,481 Bytes
59d4c6b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
import nibabel as nib
import pydicom
import os
import glob
import numpy as np
from copy import deepcopy
from matplotlib.patches import Polygon
import warnings
from scipy.ndimage import find_objects
from scipy.ndimage.morphology import binary_fill_holes
from skimage import measure
from PIL import Image, ImageDraw
import scipy
import datetime
from dicom_to_nii import set_header_info

def convert_nii_to_dicom(dicomctdir, predictedNiiFile, predictedDicomFile, predicted_structures=[], rtstruct_colors=[], refCT = None):
    # img = nib.load(os.path.join(predniidir, patient_id, 'RTStruct.nii.gz'))
    # data = img.get_fdata()[:,:,:,1]
    # patient_list = PatientList() # initialize list of patient data
    # patient_list.list_dicom_files(os.path.join(ct_ref_path,patient,inner_ct_ref_path), 1) # search dicom files in the patient data folder, stores all files in the attributes (all CT images, dose file, struct file)
    # refCT = patient_list.list[0].CTimages[0]
    # refCT.import_Dicom_CT()

    struct = RTstruct()
    struct.load_from_nii(predictedNiiFile, predicted_structures, rtstruct_colors) #TODO add already the refCT info in here because there are fields to do that
    if not struct.Contours[0].Mask_PixelSpacing == refCT.PixelSpacing:
      struct.resample_struct(refCT.PixelSpacing)
    struct.export_Dicom(refCT, predictedDicomFile)

    # create_RT_struct(dicomctdir, data.transpose([1,0,2]).astype(int), dicomdir, predicted_structures)

def integer_to_onehot(niiFile):
    
    # get contours in nnunet format
    nnunet_integer_nib = nib.load(niiFile)
    nnunet_integer_data = nnunet_integer_nib.get_fdata()
   
    # convert to onehot encoding (2**i)
    onehot_data = np.zeros(nnunet_integer_data.shape)
    for i in np.unique(nnunet_integer_data):
        onehot_data[nnunet_integer_data == i] = 2**i
        
    # get contours_exist
    contours_exist = np.ones(len(np.unique(onehot_data))).astype(bool).tolist()
    #contours_exist = np.ones(len(np.unique(onehot_data))-1).astype(bool) # -1 to remove the background which we don't want
    # save it back to nii format (will overwrite the predicted file - integer format - with this one - onehot format -)
    image_nii = nib.Nifti1Image(onehot_data, affine=np.eye(4)) # for Nifti1 header, change for a Nifti2 type of header
    # Update header fields
    image_nii = set_header_info(image_nii, nnunet_integer_nib.header['pixdim'][1:4], [nnunet_integer_nib.header['qoffset_x'],nnunet_integer_nib.header['qoffset_y'],nnunet_integer_nib.header['qoffset_z']], contours_exist = contours_exist)
    # Save  nii 
    nib.save(image_nii,niiFile) #overwrites old file     

    return

def save_nii_image(nib_img, nib_header,dst_dir, dst_filename, contours_exist = None):
    
    image_nii = nib.Nifti1Image(nib_img, affine=np.eye(4)) # for Nifti1 header, change for a Nifti2 type of header
    # Update header fields
    if contours_exist is not None:
        image_nii = set_header_info(image_nii, nib_header['pixdim'][1:4], [nib_header['qoffset_x'],nib_header['qoffset_y'],nib_header['qoffset_z']], contours_exist = contours_exist)
    else:
        image_nii = set_header_info(image_nii, nib_header['pixdim'][1:4], [nib_header['qoffset_x'],nib_header['qoffset_y'],nib_header['qoffset_z']])
    # Save  nii 
    nib.save(image_nii, os.path.join(dst_dir,dst_filename))

def Taubin_smoothing(contour):
    """ Here, we do smoothing in 2D contours!

        Parameters:

            a Nx2 numpy array containing the contour to smooth

        Returns:

            a Nx2 numpy array containing the smoothed contour """
    smoothingloops = 5
    smoothed = [np.empty_like(contour) for i in range(smoothingloops+1)]
    smoothed[0] = contour
    for i in range(smoothingloops):
        # loop over all elements in the contour
        for vertex_i in range(smoothed[0].shape[0]):
            if vertex_i == 0:
                vertex_prev = smoothed[i].shape[0]-1
                vertex_next = vertex_i+1
            elif vertex_i == smoothed[i].shape[0]-1:
                vertex_prev = vertex_i-1
                vertex_next = 0
            else:
                vertex_prev = vertex_i -1
                vertex_next = vertex_i +1
            neighbours_x = np.array([smoothed[i][vertex_prev,0], smoothed[i][vertex_next,0]])
            neighbours_y = np.array([smoothed[i][vertex_prev,1], smoothed[i][vertex_next,1]])
            smoothed[i+1][vertex_i,0] = smoothed[i][vertex_i,0] - 0.3*(smoothed[i][vertex_i,0] - np.mean(neighbours_x))
            smoothed[i+1][vertex_i,1] = smoothed[i][vertex_i,1] - 0.3*(smoothed[i][vertex_i,1] - np.mean(neighbours_y))

    return np.round(smoothed[smoothingloops],3)

class RTstruct:

  def __init__(self):
    self.SeriesInstanceUID = ""
    self.PatientInfo = {}
    self.StudyInfo = {}
    self.CT_SeriesInstanceUID = ""
    self.DcmFile = ""
    self.isLoaded = 0
    self.Contours = []
    self.NumContours = 0
    
    
  def print_struct_info(self, prefix=""):
    print(prefix + "Struct: " + self.SeriesInstanceUID)
    print(prefix + "   " + self.DcmFile)
    
    
  def print_ROINames(self):
    print("RT Struct UID: " + self.SeriesInstanceUID)
    count = -1
    for contour in self.Contours:
      count += 1
      print('  [' + str(count) + ']  ' + contour.ROIName)
    
  def resample_struct(self, newvoxelsize):
    # Rescaling to the newvoxelsize if given in parameter
    if newvoxelsize is not None: 
      for i, Contour in enumerate(self.Contours):
        source_shape = Contour.Mask_GridSize
        voxelsize = Contour.Mask_PixelSpacing
        VoxelX_source = Contour.Mask_Offset[0] + np.arange(source_shape[0])*voxelsize[0]
        VoxelY_source = Contour.Mask_Offset[1] + np.arange(source_shape[1])*voxelsize[1]
        VoxelZ_source = Contour.Mask_Offset[2] + np.arange(source_shape[2])*voxelsize[2]

        target_shape = np.ceil(np.array(source_shape).astype(float)*np.array(voxelsize).astype(float)/newvoxelsize).astype(int)
        VoxelX_target = Contour.Mask_Offset[0] + np.arange(target_shape[0])*newvoxelsize[0]
        VoxelY_target = Contour.Mask_Offset[1] + np.arange(target_shape[1])*newvoxelsize[1]
        VoxelZ_target = Contour.Mask_Offset[2] + np.arange(target_shape[2])*newvoxelsize[2]

        contour = Contour.Mask
        
        if(all(source_shape == target_shape) and np.linalg.norm(np.subtract(voxelsize, newvoxelsize) < 0.001)):
          print("! Image does not need filtering")
        else:
          # anti-aliasing filter
          sigma = [0, 0, 0]
          if(newvoxelsize[0] > voxelsize[0]): sigma[0] = 0.4 * (newvoxelsize[0]/voxelsize[0])
          if(newvoxelsize[1] > voxelsize[1]): sigma[1] = 0.4 * (newvoxelsize[1]/voxelsize[1])
          if(newvoxelsize[2] > voxelsize[2]): sigma[2] = 0.4 * (newvoxelsize[2]/voxelsize[2])
          
          if(sigma != [0, 0, 0]):
              contour = scipy.ndimage.gaussian_filter(contour.astype(float), sigma)
              #come back to binary
              contour[np.where(contour>=0.5)] = 1
              contour[np.where(contour<0.5)] = 0
              
          xi = np.array(np.meshgrid(VoxelX_target, VoxelY_target, VoxelZ_target))
          xi = np.rollaxis(xi, 0, 4)
          xi = xi.reshape((xi.size // 3, 3))
          
          # get resized ct
          contour = scipy.interpolate.interpn((VoxelX_source,VoxelY_source,VoxelZ_source), contour, xi, method='nearest', fill_value=0, bounds_error=False).astype(bool).reshape(target_shape).transpose(1,0,2)
        Contour.Mask_PixelSpacing = newvoxelsize
        Contour.Mask_GridSize = list(contour.shape) 
        Contour.NumVoxels = Contour.Mask_GridSize[0] * Contour.Mask_GridSize[1] * Contour.Mask_GridSize[2]
        Contour.Mask = contour
        self.Contours[i]=Contour
        
  
  def import_Dicom_struct(self, CT):
    if(self.isLoaded == 1):
      print("Warning: RTstruct " + self.SeriesInstanceUID + " is already loaded")
      return 
    dcm = pydicom.dcmread(self.DcmFile)
    
    self.CT_SeriesInstanceUID = CT.SeriesInstanceUID
    
    for dcm_struct in dcm.StructureSetROISequence:  
      ReferencedROI_id = next((x for x, val in enumerate(dcm.ROIContourSequence) if val.ReferencedROINumber == dcm_struct.ROINumber), -1)
      dcm_contour = dcm.ROIContourSequence[ReferencedROI_id]
    
      Contour = ROIcontour()
      Contour.SeriesInstanceUID = self.SeriesInstanceUID
      Contour.ROIName = dcm_struct.ROIName
      Contour.ROIDisplayColor = dcm_contour.ROIDisplayColor
    
      #print("Import contour " + str(len(self.Contours)) + ": " + Contour.ROIName)
    
      Contour.Mask = np.zeros((CT.GridSize[0], CT.GridSize[1], CT.GridSize[2]), dtype=np.bool)
      Contour.Mask_GridSize = CT.GridSize
      Contour.Mask_PixelSpacing = CT.PixelSpacing
      Contour.Mask_Offset = CT.ImagePositionPatient
      Contour.Mask_NumVoxels = CT.NumVoxels   
      Contour.ContourMask = np.zeros((CT.GridSize[0], CT.GridSize[1], CT.GridSize[2]), dtype=np.bool)
      
      SOPInstanceUID_match = 1
      
      if not hasattr(dcm_contour, 'ContourSequence'):
          print("This structure has no attribute ContourSequence. Skipping ...")
          continue

      for dcm_slice in dcm_contour.ContourSequence:
        Slice = {}
      
        # list of Dicom coordinates
        Slice["XY_dcm"] = list(zip( np.array(dcm_slice.ContourData[0::3]), np.array(dcm_slice.ContourData[1::3]) ))
        Slice["Z_dcm"] = float(dcm_slice.ContourData[2])
      
        # list of coordinates in the image frame
        Slice["XY_img"] = list(zip( ((np.array(dcm_slice.ContourData[0::3]) - CT.ImagePositionPatient[0]) / CT.PixelSpacing[0]), ((np.array(dcm_slice.ContourData[1::3]) - CT.ImagePositionPatient[1]) / CT.PixelSpacing[1]) ))
        Slice["Z_img"] = (Slice["Z_dcm"] - CT.ImagePositionPatient[2]) / CT.PixelSpacing[2]
        Slice["Slice_id"] = int(round(Slice["Z_img"]))
      
        # convert polygon to mask (based on matplotlib - slow)
        #x, y = np.meshgrid(np.arange(CT.GridSize[0]), np.arange(CT.GridSize[1]))
        #points = np.transpose((x.ravel(), y.ravel()))
        #path = Path(Slice["XY_img"])
        #mask = path.contains_points(points)
        #mask = mask.reshape((CT.GridSize[0], CT.GridSize[1]))
      
        # convert polygon to mask (based on PIL - fast)
        img = Image.new('L', (CT.GridSize[0], CT.GridSize[1]), 0)
        if(len(Slice["XY_img"]) > 1): ImageDraw.Draw(img).polygon(Slice["XY_img"], outline=1, fill=1)
        mask = np.array(img)
        Contour.Mask[:,:,Slice["Slice_id"]] = np.logical_or(Contour.Mask[:,:,Slice["Slice_id"]], mask)
        
        # do the same, but only keep contour in the mask
        img = Image.new('L', (CT.GridSize[0], CT.GridSize[1]), 0)
        if(len(Slice["XY_img"]) > 1): ImageDraw.Draw(img).polygon(Slice["XY_img"], outline=1, fill=0)
        mask = np.array(img)
        Contour.ContourMask[:,:,Slice["Slice_id"]] = np.logical_or(Contour.ContourMask[:,:,Slice["Slice_id"]], mask)
            
        Contour.ContourSequence.append(Slice)
      
        # check if the contour sequence is imported on the correct CT slice:
        if(hasattr(dcm_slice, 'ContourImageSequence') and CT.SOPInstanceUIDs[Slice["Slice_id"]] != dcm_slice.ContourImageSequence[0].ReferencedSOPInstanceUID):
          SOPInstanceUID_match = 0
      
      if SOPInstanceUID_match != 1:
        print("WARNING: some SOPInstanceUIDs don't match during importation of " + Contour.ROIName + " contour on CT image")
      
      self.Contours.append(Contour)
      self.NumContours += 1
    #print("self.NumContours",self.NumContours, len(self.Contours))
    self.isLoaded = 1

  def load_from_nii(self, struct_nii_path, rtstruct_labels, rtstruct_colors):
      
    # load the nii image 
    struct_nib = nib.load(struct_nii_path)
    struct_data = struct_nib.get_fdata()
            
    # get contourexists from header
    if len(struct_nib.header.extensions)==0:
      contoursexist = []
    else:
        # TODO ENABLE IN CASE WE DONT HAVE contoursexist TAKE JUST THE LENGTH OF LABELS
        contoursexist = list(struct_nib.header.extensions[0].get_content())
    
    # get number of rois in struct_data 
    # for nii with consecutive integers
    #roinumbers = np.unique(struct_data) 
    # for nii with power of 2 format
    #roinumbers = list(np.arange(np.floor(np.log2(np.max(struct_data))).astype(int)+1)) # CAREFUL WITH THIS LINE, MIGHT NOT WORK ALWAYS IF WE HAVE OVERLAP OF 
    #nb_rois_in_struct = len(roinumbers)
    
    # check that they match
    if not len(rtstruct_labels) == len(contoursexist) :
        #raise TypeError("The number or struct labels, contoursexist, and  masks in struct.nii.gz is not the same")
        # raise Warning("The number or struct labels and contoursexist in struct.nii.gz is not the same. Taking len(contoursexist) as number of rois")
        self.NumContours = len(rtstruct_labels)#len(contoursexist)
    else:
        self.NumContours = len(rtstruct_labels)#len(contoursexist)
    print("num contours", self.NumContours, len(rtstruct_labels) , len(contoursexist))    
    # fill in contours
    #TODO fill in ContourSequence and ContourData to be faster later in writeDicomRTstruct
    for c in range(self.NumContours):
        
        Contour = ROIcontour()
        Contour.SeriesInstanceUID = self.SeriesInstanceUID
        Contour.ROIName = rtstruct_labels[c]
        if rtstruct_colors[c] == None:
            Contour.ROIDisplayColor = [0, 0, 255] # default color is blue
        else:
            Contour.ROIDisplayColor = rtstruct_colors[c] 
        if len(contoursexist)!=0 and contoursexist[c] == 0:
            Contour.Mask = np.zeros((struct_nib.header['dim'][1], struct_nib.header['dim'][2], struct_nib.header['dim'][3]), dtype=np.bool_)
        else:
            Contour.Mask = np.bitwise_and(struct_data.astype(int), 2 ** c).astype(bool)
        #TODO enable option for consecutive integers masks?
        Contour.Mask_GridSize = [struct_nib.header['dim'][1], struct_nib.header['dim'][2], struct_nib.header['dim'][3]]
        Contour.Mask_PixelSpacing = [struct_nib.header['pixdim'][1], struct_nib.header['pixdim'][2], struct_nib.header['pixdim'][3]]
        Contour.Mask_Offset = [struct_nib.header['qoffset_x'], struct_nib.header['qoffset_y'], struct_nib.header['qoffset_z']]
        Contour.Mask_NumVoxels = struct_nib.header['dim'][1].astype(int) * struct_nib.header['dim'][2].astype(int) * struct_nib.header['dim'][3].astype(int) 
        # Contour.ContourMask --> this should be only the contour, so far we don't need it so I'll skip it
      
        # apend to self
        self.Contours.append(Contour)
        

  def export_Dicom(self, refCT, outputFile):   
    print("EXPORT DICOM")             
    # meta data
    
    # generate UID
    #uid_base = '' #TODO define one for us if we want? Siri is using: uid_base='1.2.826.0.1.3680043.10.230.',
    # personal UID, applied for via https://www.medicalconnections.co.uk/FreeUID/
    
    SOPInstanceUID = pydicom.uid.generate_uid() #TODO verify this! Siri was using a uid_base, this line is taken from OpenTPS writeRTPlan
    #SOPInstanceUID = pydicom.uid.generate_uid('1.2.840.10008.5.1.4.1.1.481.3.') # siri's version
    
    meta = pydicom.dataset.FileMetaDataset()
    meta.MediaStorageSOPClassUID = '1.2.840.10008.5.1.4.1.1.481.3' # UID class for RTSTRUCT
    meta.MediaStorageSOPInstanceUID = SOPInstanceUID
    # meta.ImplementationClassUID = uid_base + '1.1.1' # Siri's
    meta.ImplementationClassUID =  '1.2.250.1.59.3.0.3.5.0' # from OpenREGGUI
    meta.TransferSyntaxUID = '1.2.840.10008.1.2' # Siri's and OpenREGGUI
    meta.FileMetaInformationGroupLength = 188 # from Siri
    # meta.ImplementationVersionName = 'DCIE 2.2' # from Siri
    
    
    # Main data elements - only required fields, optional fields like StudyDescription are not included for simplicity
    ds = pydicom.dataset.FileDataset(outputFile, {}, file_meta=meta, preamble=b"\0" * 128) # preamble is taken from this example https://pydicom.github.io/pydicom/dev/auto_examples/input_output/plot_write_dicom.html#sphx-glr-auto-examples-input-output-plot-write-dicom-py
    
    # Patient info - will take it from the referenced CT image
    ds.PatientName = refCT.PatientInfo.PatientName
    ds.PatientID = refCT.PatientInfo.PatientID
    ds.PatientBirthDate = refCT.PatientInfo.PatientBirthDate
    ds.PatientSex = refCT.PatientInfo.PatientSex
    
    # General Study 
    dt = datetime.datetime.now()
    ds.StudyDate = dt.strftime('%Y%m%d')
    ds.StudyTime = dt.strftime('%H%M%S.%f')
    ds.AccessionNumber = '1' # A RIS/PACS (Radiology Information System/picture archiving and communication system) generated number that identifies the order for the Study.
    ds.ReferringPhysicianName = 'NA'
    ds.StudyInstanceUID = refCT.StudyInfo.StudyInstanceUID # get from reference CT to indicate that they belong to the same study
    ds.StudyID = refCT.StudyInfo.StudyID # get from reference CT to indicate that they belong to the same study
    
    # RT Series
    #ds.SeriesDate # optional
    #ds.SeriesTime # optional
    ds.Modality = 'RTSTRUCT'
    ds.SeriesDescription = 'AI-predicted' + dt.strftime('%Y%m%d') + dt.strftime('%H%M%S.%f')
    ds.OperatorsName = 'MIRO AI team'
    ds.SeriesInstanceUID = pydicom.uid.generate_uid() # if we have a uid_base --> pydicom.uid.generate_uid(uid_base)
    ds.SeriesNumber = '1'
    
    # General Equipment
    ds.Manufacturer = 'MIRO lab'
    #ds.InstitutionName = 'MIRO lab' # optional
    #ds.ManufacturerModelName = 'nnUNet' # optional, but can be a good tag to insert the model information or label
    #ds.SoftwareVersions # optional, but can be used to insert the version of the code in PARROT or the version of the model
    
    # Frame of Reference
    ds.FrameOfReferenceUID = refCT.FrameOfReferenceUID
    ds.PositionReferenceIndicator = '' # empty if unknown - info here https://dicom.innolitics.com/ciods/rt-structure-set/frame-of-reference/00201040
    
    # Structure Set
    ds.StructureSetLabel = 'AI predicted' # do not use - or spetial characters or the Dicom Validation in Raystation will give a warning
    #ds.StructureSetName # optional
    #ds.StructureSetDescription # optional
    ds.StructureSetDate = dt.strftime('%Y%m%d')
    ds.StructureSetTime = dt.strftime('%H%M%S.%f')
    ds.ReferencedFrameOfReferenceSequence = pydicom.Sequence()# optional
    # we assume there is only one, the CT
    dssr = pydicom.Dataset()
    dssr.FrameOfReferenceUID = refCT.FrameOfReferenceUID
    dssr.RTReferencedStudySequence = pydicom.Sequence()
    # fill in sequence
    dssr_refStudy = pydicom.Dataset()
    dssr_refStudy.ReferencedSOPClassUID = '1.2.840.10008.3.1.2.3.1' # Study Management Detached
    dssr_refStudy.ReferencedSOPInstanceUID = refCT.StudyInfo.StudyInstanceUID
    dssr_refStudy.RTReferencedSeriesSequence = pydicom.Sequence()
    #initialize
    dssr_refStudy_series = pydicom.Dataset()
    dssr_refStudy_series.SeriesInstanceUID = refCT.SeriesInstanceUID
    dssr_refStudy_series.ContourImageSequence = pydicom.Sequence()
    # loop over slices of CT
    for slc in range(len(refCT.SOPInstanceUIDs)):
        dssr_refStudy_series_slc = pydicom.Dataset()
        dssr_refStudy_series_slc.ReferencedSOPClassUID = refCT.SOPClassUID
        dssr_refStudy_series_slc.ReferencedSOPInstanceUID = refCT.SOPInstanceUIDs[slc]
        # append
        dssr_refStudy_series.ContourImageSequence.append(dssr_refStudy_series_slc)
    
    # append
    dssr_refStudy.RTReferencedSeriesSequence.append(dssr_refStudy_series)
    # append
    dssr.RTReferencedStudySequence.append(dssr_refStudy)
    #append
    ds.ReferencedFrameOfReferenceSequence.append(dssr)
    #
    ds.StructureSetROISequence = pydicom.Sequence()   
    # loop over the ROIs to fill in the fields
    for iroi in range(self.NumContours):
        # initialize the Dataset        
        dssr = pydicom.Dataset()
        dssr.ROINumber = iroi + 1 # because iroi starts at zero and ROINumber cannot be zero
        dssr.ReferencedFrameOfReferenceUID = ds.FrameOfReferenceUID # coming from refCT
        dssr.ROIName = self.Contours[iroi].ROIName
        #dssr.ROIDescription # optional 
        dssr.ROIGenerationAlgorithm = 'AUTOMATIC' # can also be 'SEMIAUTOMATIC' OR 'MANUAL', info here https://dicom.innolitics.com/ciods/rt-structure-set/structure-set/30060020/30060036
        #TODO enable a function to tell us which type of GenerationAlgorithm we have    
        ds.StructureSetROISequence.append(dssr)

    # delete to remove space
    del dssr
    
    #TODO merge all loops into one to be faster, although like this the code is easier to follow I find
    
    # ROI Contour
    ds.ROIContourSequence = pydicom.Sequence()
    # loop over the ROIs to fill in the fields
    for iroi in range(self.NumContours):
        # initialize the Dataset
        dssr = pydicom.Dataset()
        dssr.ROIDisplayColor = self.Contours[iroi].ROIDisplayColor
        dssr.ReferencedROINumber = iroi + 1 # because iroi starts at zero and ReferencedROINumber cannot be zero
        dssr.ContourSequence = pydicom.Sequence() 
        # mask to polygon
        polygonMeshList = self.Contours[iroi].getROIContour()
        # get z vector
        z_coords = list(np.arange(self.Contours[iroi].Mask_Offset[2],self.Contours[iroi].Mask_Offset[2]+self.Contours[iroi].Mask_GridSize[2]*self.Contours[iroi].Mask_PixelSpacing[2], self.Contours[iroi].Mask_PixelSpacing[2]))
        # loop over the polygonMeshList to fill in ContourSequence
        for polygon in polygonMeshList:

            # initialize the Dataset
            dssr_slc = pydicom.Dataset()
            dssr_slc.ContourGeometricType = 'CLOSED_PLANAR' # can also be 'POINT', 'OPEN_PLANAR', 'OPEN_NONPLANAR', info here https://dicom.innolitics.com/ciods/rt-structure-set/roi-contour/30060039/30060040/30060042
            #TODO enable the proper selection of the ContourGeometricType

            # fill in contour points and data
            dssr_slc.NumberOfContourPoints = len(polygon[0::3])
            #dssr_slc.ContourNumber # optional
            # Smooth contour
            smoothed_array_2D = Taubin_smoothing(np.transpose(np.array([polygon[0::3],polygon[1::3]])))
            # fill in smoothed contour
            polygon[0::3] = smoothed_array_2D[:,0]
            polygon[1::3] = smoothed_array_2D[:,1]
            dssr_slc.ContourData = polygon
            
            #get slice
            polygon_z = polygon[2]
            slc = z_coords.index(polygon_z)
            # fill in ContourImageSequence
            dssr_slc.ContourImageSequence = pydicom.Sequence() # Sequence of images containing the contour
            # in our case, we assume we only have one, the reference CT (refCT)
            dssr_slc_ref = pydicom.Dataset()
            dssr_slc_ref.ReferencedSOPClassUID = refCT.SOPClassUID
            dssr_slc_ref.ReferencedSOPInstanceUID = refCT.SOPInstanceUIDs[slc]
            dssr_slc.ContourImageSequence.append(dssr_slc_ref)
              
            # append Dataset to Sequence
            dssr.ContourSequence.append(dssr_slc)
            
        # append Dataset
        ds.ROIContourSequence.append(dssr)
    
    # RT ROI Observations
    ds.RTROIObservationsSequence = pydicom.Sequence()
    # loop over the ROIs to fill in the fields
    for iroi in range(self.NumContours):
        # initialize the Dataset
        dssr = pydicom.Dataset()
        dssr.ObservationNumber = iroi + 1 # because iroi starts at zero and ReferencedROINumber cannot be zero
        dssr.ReferencedROINumber = iroi + 1 ## because iroi starts at zero and ReferencedROINumber cannot be zero
        dssr.ROIObservationLabel = self.Contours[iroi].ROIName #optional
        dssr.RTROIInterpretedType = 'ORGAN' # we can have many types, see here https://dicom.innolitics.com/ciods/rt-structure-set/rt-roi-observations/30060080/300600a4
        # TODO enable a better fill in of the RTROIInterpretedType
        dssr.ROIInterpreter = '' # empty if unknown
        # append Dataset
        ds.RTROIObservationsSequence.append(dssr)
    
    # Approval
    ds.ApprovalStatus = 'UNAPPROVED'#'APPROVED' 
    # if ds.ApprovalStatus = 'APPROVED', then we need to fill in the reviewer information
    #ds.ReviewDate = dt.strftime('%Y%m%d')
    #ds.ReviewTime = dt.strftime('%H%M%S.%f')
    #ds.ReviewerName = 'MIRO AI team'
    
    # SOP common
    ds.SpecificCharacterSet = 'ISO_IR 100' # conditionally required - see info here https://dicom.innolitics.com/ciods/rt-structure-set/sop-common/00080005
    #ds.InstanceCreationDate # optional
    #ds.InstanceCreationTime # optional
    ds.SOPClassUID = '1.2.840.10008.5.1.4.1.1.481.3' #RTSTRUCT file
    ds.SOPInstanceUID = SOPInstanceUID# Siri's --> pydicom.uid.generate_uid(uid_base)
    #ds.InstanceNumber # optional
    
    # save dicom file
    print("Export dicom RTSTRUCT: " + outputFile)
    ds.save_as(outputFile)



      
class ROIcontour:

    def __init__(self):
      self.SeriesInstanceUID = ""
      self.ROIName = ""
      self.ContourSequence = []
      
    def getROIContour(self): # this is from new version of OpenTPS, I(ana) have adapted it to work with old version of self.Contours[i].Mask
    
        try:
            from skimage.measure import label, find_contours
            from skimage.segmentation import find_boundaries
        except:
            print('Module skimage (scikit-image) not installed, ROIMask cannot be converted to ROIContour')
            return 0
    
        polygonMeshList = []
        for zSlice in range(self.Mask.shape[2]):
    
            labeledImg, numberOfLabel = label(self.Mask[:, :, zSlice], return_num=True)
    
            for i in range(1, numberOfLabel + 1):
    
                singleLabelImg = labeledImg == i
                contours = find_contours(singleLabelImg.astype(np.uint8), level=0.6)
    
                if len(contours) > 0:
    
                    if len(contours) == 2:
    
                        ## use a different threshold in the case of an interior contour
                        contours2 = find_contours(singleLabelImg.astype(np.uint8), level=0.4)
    
                        interiorContour = contours2[1]
                        polygonMesh = []
                        for point in interiorContour:
    
                            xCoord = np.round(point[1]) * self.Mask_PixelSpacing[1] + self.Mask_Offset[1] # original Damien in OpenTPS
                            yCoord = np.round(point[0]) * self.Mask_PixelSpacing[0] + self.Mask_Offset[0] # original Damien in OpenTPS
                            # xCoord = np.round(point[1]) * self.Mask_PixelSpacing[0] + self.Mask_Offset[0] #AB
                            # yCoord = np.round(point[0]) * self.Mask_PixelSpacing[1] + self.Mask_Offset[1] #AB
                            zCoord = zSlice * self.Mask_PixelSpacing[2] + self.Mask_Offset[2]
    
                            polygonMesh.append(yCoord) # original Damien in OpenTPS
                            polygonMesh.append(xCoord) # original Damien in OpenTPS
                            # polygonMesh.append(xCoord) # AB
                            # polygonMesh.append(yCoord) # AB
                            polygonMesh.append(zCoord)
    
                        polygonMeshList.append(polygonMesh)
    
                    contour = contours[0]
    
                    polygonMesh = []
                    for point in contour:
    
                        #xCoord = np.round(point[1]) * self.Mask_PixelSpacing[1] + self.Mask_Offset[1] # original Damien in OpenTPS
                        #yCoord = np.round(point[0]) * self.Mask_PixelSpacing[0] + self.Mask_Offset[0] # original Damien in OpenTPS
                        xCoord = np.round(point[1]) * self.Mask_PixelSpacing[0] + self.Mask_Offset[0] #AB
                        yCoord = np.round(point[0]) * self.Mask_PixelSpacing[1] + self.Mask_Offset[1] #AB
                        zCoord = zSlice * self.Mask_PixelSpacing[2] + self.Mask_Offset[2]
    
                        polygonMesh.append(xCoord) # AB
                        polygonMesh.append(yCoord) # AB
                        #polygonMesh.append(yCoord) # original Damien in OpenTPS
                        #polygonMesh.append(xCoord) # original Damien in OpenTPS
                        polygonMesh.append(zCoord)
    
                    polygonMeshList.append(polygonMesh)
    
        ## I (ana) will comment this part since I will not use the class ROIContour for simplicity ###
        #from opentps.core.data._roiContour import ROIContour  ## this is done here to avoir circular imports issue
        #contour = ROIContour(name=self.ROIName, displayColor=self.ROIDisplayColor)
        #contour.polygonMesh = polygonMeshList
    
        #return contour
        
        # instead returning the polygonMeshList directly
        return polygonMeshList