File size: 29,481 Bytes
59d4c6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
import nibabel as nib
import pydicom
import os
import glob
import numpy as np
from copy import deepcopy
from matplotlib.patches import Polygon
import warnings
from scipy.ndimage import find_objects
from scipy.ndimage.morphology import binary_fill_holes
from skimage import measure
from PIL import Image, ImageDraw
import scipy
import datetime
from dicom_to_nii import set_header_info
def convert_nii_to_dicom(dicomctdir, predictedNiiFile, predictedDicomFile, predicted_structures=[], rtstruct_colors=[], refCT = None):
# img = nib.load(os.path.join(predniidir, patient_id, 'RTStruct.nii.gz'))
# data = img.get_fdata()[:,:,:,1]
# patient_list = PatientList() # initialize list of patient data
# patient_list.list_dicom_files(os.path.join(ct_ref_path,patient,inner_ct_ref_path), 1) # search dicom files in the patient data folder, stores all files in the attributes (all CT images, dose file, struct file)
# refCT = patient_list.list[0].CTimages[0]
# refCT.import_Dicom_CT()
struct = RTstruct()
struct.load_from_nii(predictedNiiFile, predicted_structures, rtstruct_colors) #TODO add already the refCT info in here because there are fields to do that
if not struct.Contours[0].Mask_PixelSpacing == refCT.PixelSpacing:
struct.resample_struct(refCT.PixelSpacing)
struct.export_Dicom(refCT, predictedDicomFile)
# create_RT_struct(dicomctdir, data.transpose([1,0,2]).astype(int), dicomdir, predicted_structures)
def integer_to_onehot(niiFile):
# get contours in nnunet format
nnunet_integer_nib = nib.load(niiFile)
nnunet_integer_data = nnunet_integer_nib.get_fdata()
# convert to onehot encoding (2**i)
onehot_data = np.zeros(nnunet_integer_data.shape)
for i in np.unique(nnunet_integer_data):
onehot_data[nnunet_integer_data == i] = 2**i
# get contours_exist
contours_exist = np.ones(len(np.unique(onehot_data))).astype(bool).tolist()
#contours_exist = np.ones(len(np.unique(onehot_data))-1).astype(bool) # -1 to remove the background which we don't want
# save it back to nii format (will overwrite the predicted file - integer format - with this one - onehot format -)
image_nii = nib.Nifti1Image(onehot_data, affine=np.eye(4)) # for Nifti1 header, change for a Nifti2 type of header
# Update header fields
image_nii = set_header_info(image_nii, nnunet_integer_nib.header['pixdim'][1:4], [nnunet_integer_nib.header['qoffset_x'],nnunet_integer_nib.header['qoffset_y'],nnunet_integer_nib.header['qoffset_z']], contours_exist = contours_exist)
# Save nii
nib.save(image_nii,niiFile) #overwrites old file
return
def save_nii_image(nib_img, nib_header,dst_dir, dst_filename, contours_exist = None):
image_nii = nib.Nifti1Image(nib_img, affine=np.eye(4)) # for Nifti1 header, change for a Nifti2 type of header
# Update header fields
if contours_exist is not None:
image_nii = set_header_info(image_nii, nib_header['pixdim'][1:4], [nib_header['qoffset_x'],nib_header['qoffset_y'],nib_header['qoffset_z']], contours_exist = contours_exist)
else:
image_nii = set_header_info(image_nii, nib_header['pixdim'][1:4], [nib_header['qoffset_x'],nib_header['qoffset_y'],nib_header['qoffset_z']])
# Save nii
nib.save(image_nii, os.path.join(dst_dir,dst_filename))
def Taubin_smoothing(contour):
""" Here, we do smoothing in 2D contours!
Parameters:
a Nx2 numpy array containing the contour to smooth
Returns:
a Nx2 numpy array containing the smoothed contour """
smoothingloops = 5
smoothed = [np.empty_like(contour) for i in range(smoothingloops+1)]
smoothed[0] = contour
for i in range(smoothingloops):
# loop over all elements in the contour
for vertex_i in range(smoothed[0].shape[0]):
if vertex_i == 0:
vertex_prev = smoothed[i].shape[0]-1
vertex_next = vertex_i+1
elif vertex_i == smoothed[i].shape[0]-1:
vertex_prev = vertex_i-1
vertex_next = 0
else:
vertex_prev = vertex_i -1
vertex_next = vertex_i +1
neighbours_x = np.array([smoothed[i][vertex_prev,0], smoothed[i][vertex_next,0]])
neighbours_y = np.array([smoothed[i][vertex_prev,1], smoothed[i][vertex_next,1]])
smoothed[i+1][vertex_i,0] = smoothed[i][vertex_i,0] - 0.3*(smoothed[i][vertex_i,0] - np.mean(neighbours_x))
smoothed[i+1][vertex_i,1] = smoothed[i][vertex_i,1] - 0.3*(smoothed[i][vertex_i,1] - np.mean(neighbours_y))
return np.round(smoothed[smoothingloops],3)
class RTstruct:
def __init__(self):
self.SeriesInstanceUID = ""
self.PatientInfo = {}
self.StudyInfo = {}
self.CT_SeriesInstanceUID = ""
self.DcmFile = ""
self.isLoaded = 0
self.Contours = []
self.NumContours = 0
def print_struct_info(self, prefix=""):
print(prefix + "Struct: " + self.SeriesInstanceUID)
print(prefix + " " + self.DcmFile)
def print_ROINames(self):
print("RT Struct UID: " + self.SeriesInstanceUID)
count = -1
for contour in self.Contours:
count += 1
print(' [' + str(count) + '] ' + contour.ROIName)
def resample_struct(self, newvoxelsize):
# Rescaling to the newvoxelsize if given in parameter
if newvoxelsize is not None:
for i, Contour in enumerate(self.Contours):
source_shape = Contour.Mask_GridSize
voxelsize = Contour.Mask_PixelSpacing
VoxelX_source = Contour.Mask_Offset[0] + np.arange(source_shape[0])*voxelsize[0]
VoxelY_source = Contour.Mask_Offset[1] + np.arange(source_shape[1])*voxelsize[1]
VoxelZ_source = Contour.Mask_Offset[2] + np.arange(source_shape[2])*voxelsize[2]
target_shape = np.ceil(np.array(source_shape).astype(float)*np.array(voxelsize).astype(float)/newvoxelsize).astype(int)
VoxelX_target = Contour.Mask_Offset[0] + np.arange(target_shape[0])*newvoxelsize[0]
VoxelY_target = Contour.Mask_Offset[1] + np.arange(target_shape[1])*newvoxelsize[1]
VoxelZ_target = Contour.Mask_Offset[2] + np.arange(target_shape[2])*newvoxelsize[2]
contour = Contour.Mask
if(all(source_shape == target_shape) and np.linalg.norm(np.subtract(voxelsize, newvoxelsize) < 0.001)):
print("! Image does not need filtering")
else:
# anti-aliasing filter
sigma = [0, 0, 0]
if(newvoxelsize[0] > voxelsize[0]): sigma[0] = 0.4 * (newvoxelsize[0]/voxelsize[0])
if(newvoxelsize[1] > voxelsize[1]): sigma[1] = 0.4 * (newvoxelsize[1]/voxelsize[1])
if(newvoxelsize[2] > voxelsize[2]): sigma[2] = 0.4 * (newvoxelsize[2]/voxelsize[2])
if(sigma != [0, 0, 0]):
contour = scipy.ndimage.gaussian_filter(contour.astype(float), sigma)
#come back to binary
contour[np.where(contour>=0.5)] = 1
contour[np.where(contour<0.5)] = 0
xi = np.array(np.meshgrid(VoxelX_target, VoxelY_target, VoxelZ_target))
xi = np.rollaxis(xi, 0, 4)
xi = xi.reshape((xi.size // 3, 3))
# get resized ct
contour = scipy.interpolate.interpn((VoxelX_source,VoxelY_source,VoxelZ_source), contour, xi, method='nearest', fill_value=0, bounds_error=False).astype(bool).reshape(target_shape).transpose(1,0,2)
Contour.Mask_PixelSpacing = newvoxelsize
Contour.Mask_GridSize = list(contour.shape)
Contour.NumVoxels = Contour.Mask_GridSize[0] * Contour.Mask_GridSize[1] * Contour.Mask_GridSize[2]
Contour.Mask = contour
self.Contours[i]=Contour
def import_Dicom_struct(self, CT):
if(self.isLoaded == 1):
print("Warning: RTstruct " + self.SeriesInstanceUID + " is already loaded")
return
dcm = pydicom.dcmread(self.DcmFile)
self.CT_SeriesInstanceUID = CT.SeriesInstanceUID
for dcm_struct in dcm.StructureSetROISequence:
ReferencedROI_id = next((x for x, val in enumerate(dcm.ROIContourSequence) if val.ReferencedROINumber == dcm_struct.ROINumber), -1)
dcm_contour = dcm.ROIContourSequence[ReferencedROI_id]
Contour = ROIcontour()
Contour.SeriesInstanceUID = self.SeriesInstanceUID
Contour.ROIName = dcm_struct.ROIName
Contour.ROIDisplayColor = dcm_contour.ROIDisplayColor
#print("Import contour " + str(len(self.Contours)) + ": " + Contour.ROIName)
Contour.Mask = np.zeros((CT.GridSize[0], CT.GridSize[1], CT.GridSize[2]), dtype=np.bool)
Contour.Mask_GridSize = CT.GridSize
Contour.Mask_PixelSpacing = CT.PixelSpacing
Contour.Mask_Offset = CT.ImagePositionPatient
Contour.Mask_NumVoxels = CT.NumVoxels
Contour.ContourMask = np.zeros((CT.GridSize[0], CT.GridSize[1], CT.GridSize[2]), dtype=np.bool)
SOPInstanceUID_match = 1
if not hasattr(dcm_contour, 'ContourSequence'):
print("This structure has no attribute ContourSequence. Skipping ...")
continue
for dcm_slice in dcm_contour.ContourSequence:
Slice = {}
# list of Dicom coordinates
Slice["XY_dcm"] = list(zip( np.array(dcm_slice.ContourData[0::3]), np.array(dcm_slice.ContourData[1::3]) ))
Slice["Z_dcm"] = float(dcm_slice.ContourData[2])
# list of coordinates in the image frame
Slice["XY_img"] = list(zip( ((np.array(dcm_slice.ContourData[0::3]) - CT.ImagePositionPatient[0]) / CT.PixelSpacing[0]), ((np.array(dcm_slice.ContourData[1::3]) - CT.ImagePositionPatient[1]) / CT.PixelSpacing[1]) ))
Slice["Z_img"] = (Slice["Z_dcm"] - CT.ImagePositionPatient[2]) / CT.PixelSpacing[2]
Slice["Slice_id"] = int(round(Slice["Z_img"]))
# convert polygon to mask (based on matplotlib - slow)
#x, y = np.meshgrid(np.arange(CT.GridSize[0]), np.arange(CT.GridSize[1]))
#points = np.transpose((x.ravel(), y.ravel()))
#path = Path(Slice["XY_img"])
#mask = path.contains_points(points)
#mask = mask.reshape((CT.GridSize[0], CT.GridSize[1]))
# convert polygon to mask (based on PIL - fast)
img = Image.new('L', (CT.GridSize[0], CT.GridSize[1]), 0)
if(len(Slice["XY_img"]) > 1): ImageDraw.Draw(img).polygon(Slice["XY_img"], outline=1, fill=1)
mask = np.array(img)
Contour.Mask[:,:,Slice["Slice_id"]] = np.logical_or(Contour.Mask[:,:,Slice["Slice_id"]], mask)
# do the same, but only keep contour in the mask
img = Image.new('L', (CT.GridSize[0], CT.GridSize[1]), 0)
if(len(Slice["XY_img"]) > 1): ImageDraw.Draw(img).polygon(Slice["XY_img"], outline=1, fill=0)
mask = np.array(img)
Contour.ContourMask[:,:,Slice["Slice_id"]] = np.logical_or(Contour.ContourMask[:,:,Slice["Slice_id"]], mask)
Contour.ContourSequence.append(Slice)
# check if the contour sequence is imported on the correct CT slice:
if(hasattr(dcm_slice, 'ContourImageSequence') and CT.SOPInstanceUIDs[Slice["Slice_id"]] != dcm_slice.ContourImageSequence[0].ReferencedSOPInstanceUID):
SOPInstanceUID_match = 0
if SOPInstanceUID_match != 1:
print("WARNING: some SOPInstanceUIDs don't match during importation of " + Contour.ROIName + " contour on CT image")
self.Contours.append(Contour)
self.NumContours += 1
#print("self.NumContours",self.NumContours, len(self.Contours))
self.isLoaded = 1
def load_from_nii(self, struct_nii_path, rtstruct_labels, rtstruct_colors):
# load the nii image
struct_nib = nib.load(struct_nii_path)
struct_data = struct_nib.get_fdata()
# get contourexists from header
if len(struct_nib.header.extensions)==0:
contoursexist = []
else:
# TODO ENABLE IN CASE WE DONT HAVE contoursexist TAKE JUST THE LENGTH OF LABELS
contoursexist = list(struct_nib.header.extensions[0].get_content())
# get number of rois in struct_data
# for nii with consecutive integers
#roinumbers = np.unique(struct_data)
# for nii with power of 2 format
#roinumbers = list(np.arange(np.floor(np.log2(np.max(struct_data))).astype(int)+1)) # CAREFUL WITH THIS LINE, MIGHT NOT WORK ALWAYS IF WE HAVE OVERLAP OF
#nb_rois_in_struct = len(roinumbers)
# check that they match
if not len(rtstruct_labels) == len(contoursexist) :
#raise TypeError("The number or struct labels, contoursexist, and masks in struct.nii.gz is not the same")
# raise Warning("The number or struct labels and contoursexist in struct.nii.gz is not the same. Taking len(contoursexist) as number of rois")
self.NumContours = len(rtstruct_labels)#len(contoursexist)
else:
self.NumContours = len(rtstruct_labels)#len(contoursexist)
print("num contours", self.NumContours, len(rtstruct_labels) , len(contoursexist))
# fill in contours
#TODO fill in ContourSequence and ContourData to be faster later in writeDicomRTstruct
for c in range(self.NumContours):
Contour = ROIcontour()
Contour.SeriesInstanceUID = self.SeriesInstanceUID
Contour.ROIName = rtstruct_labels[c]
if rtstruct_colors[c] == None:
Contour.ROIDisplayColor = [0, 0, 255] # default color is blue
else:
Contour.ROIDisplayColor = rtstruct_colors[c]
if len(contoursexist)!=0 and contoursexist[c] == 0:
Contour.Mask = np.zeros((struct_nib.header['dim'][1], struct_nib.header['dim'][2], struct_nib.header['dim'][3]), dtype=np.bool_)
else:
Contour.Mask = np.bitwise_and(struct_data.astype(int), 2 ** c).astype(bool)
#TODO enable option for consecutive integers masks?
Contour.Mask_GridSize = [struct_nib.header['dim'][1], struct_nib.header['dim'][2], struct_nib.header['dim'][3]]
Contour.Mask_PixelSpacing = [struct_nib.header['pixdim'][1], struct_nib.header['pixdim'][2], struct_nib.header['pixdim'][3]]
Contour.Mask_Offset = [struct_nib.header['qoffset_x'], struct_nib.header['qoffset_y'], struct_nib.header['qoffset_z']]
Contour.Mask_NumVoxels = struct_nib.header['dim'][1].astype(int) * struct_nib.header['dim'][2].astype(int) * struct_nib.header['dim'][3].astype(int)
# Contour.ContourMask --> this should be only the contour, so far we don't need it so I'll skip it
# apend to self
self.Contours.append(Contour)
def export_Dicom(self, refCT, outputFile):
print("EXPORT DICOM")
# meta data
# generate UID
#uid_base = '' #TODO define one for us if we want? Siri is using: uid_base='1.2.826.0.1.3680043.10.230.',
# personal UID, applied for via https://www.medicalconnections.co.uk/FreeUID/
SOPInstanceUID = pydicom.uid.generate_uid() #TODO verify this! Siri was using a uid_base, this line is taken from OpenTPS writeRTPlan
#SOPInstanceUID = pydicom.uid.generate_uid('1.2.840.10008.5.1.4.1.1.481.3.') # siri's version
meta = pydicom.dataset.FileMetaDataset()
meta.MediaStorageSOPClassUID = '1.2.840.10008.5.1.4.1.1.481.3' # UID class for RTSTRUCT
meta.MediaStorageSOPInstanceUID = SOPInstanceUID
# meta.ImplementationClassUID = uid_base + '1.1.1' # Siri's
meta.ImplementationClassUID = '1.2.250.1.59.3.0.3.5.0' # from OpenREGGUI
meta.TransferSyntaxUID = '1.2.840.10008.1.2' # Siri's and OpenREGGUI
meta.FileMetaInformationGroupLength = 188 # from Siri
# meta.ImplementationVersionName = 'DCIE 2.2' # from Siri
# Main data elements - only required fields, optional fields like StudyDescription are not included for simplicity
ds = pydicom.dataset.FileDataset(outputFile, {}, file_meta=meta, preamble=b"\0" * 128) # preamble is taken from this example https://pydicom.github.io/pydicom/dev/auto_examples/input_output/plot_write_dicom.html#sphx-glr-auto-examples-input-output-plot-write-dicom-py
# Patient info - will take it from the referenced CT image
ds.PatientName = refCT.PatientInfo.PatientName
ds.PatientID = refCT.PatientInfo.PatientID
ds.PatientBirthDate = refCT.PatientInfo.PatientBirthDate
ds.PatientSex = refCT.PatientInfo.PatientSex
# General Study
dt = datetime.datetime.now()
ds.StudyDate = dt.strftime('%Y%m%d')
ds.StudyTime = dt.strftime('%H%M%S.%f')
ds.AccessionNumber = '1' # A RIS/PACS (Radiology Information System/picture archiving and communication system) generated number that identifies the order for the Study.
ds.ReferringPhysicianName = 'NA'
ds.StudyInstanceUID = refCT.StudyInfo.StudyInstanceUID # get from reference CT to indicate that they belong to the same study
ds.StudyID = refCT.StudyInfo.StudyID # get from reference CT to indicate that they belong to the same study
# RT Series
#ds.SeriesDate # optional
#ds.SeriesTime # optional
ds.Modality = 'RTSTRUCT'
ds.SeriesDescription = 'AI-predicted' + dt.strftime('%Y%m%d') + dt.strftime('%H%M%S.%f')
ds.OperatorsName = 'MIRO AI team'
ds.SeriesInstanceUID = pydicom.uid.generate_uid() # if we have a uid_base --> pydicom.uid.generate_uid(uid_base)
ds.SeriesNumber = '1'
# General Equipment
ds.Manufacturer = 'MIRO lab'
#ds.InstitutionName = 'MIRO lab' # optional
#ds.ManufacturerModelName = 'nnUNet' # optional, but can be a good tag to insert the model information or label
#ds.SoftwareVersions # optional, but can be used to insert the version of the code in PARROT or the version of the model
# Frame of Reference
ds.FrameOfReferenceUID = refCT.FrameOfReferenceUID
ds.PositionReferenceIndicator = '' # empty if unknown - info here https://dicom.innolitics.com/ciods/rt-structure-set/frame-of-reference/00201040
# Structure Set
ds.StructureSetLabel = 'AI predicted' # do not use - or spetial characters or the Dicom Validation in Raystation will give a warning
#ds.StructureSetName # optional
#ds.StructureSetDescription # optional
ds.StructureSetDate = dt.strftime('%Y%m%d')
ds.StructureSetTime = dt.strftime('%H%M%S.%f')
ds.ReferencedFrameOfReferenceSequence = pydicom.Sequence()# optional
# we assume there is only one, the CT
dssr = pydicom.Dataset()
dssr.FrameOfReferenceUID = refCT.FrameOfReferenceUID
dssr.RTReferencedStudySequence = pydicom.Sequence()
# fill in sequence
dssr_refStudy = pydicom.Dataset()
dssr_refStudy.ReferencedSOPClassUID = '1.2.840.10008.3.1.2.3.1' # Study Management Detached
dssr_refStudy.ReferencedSOPInstanceUID = refCT.StudyInfo.StudyInstanceUID
dssr_refStudy.RTReferencedSeriesSequence = pydicom.Sequence()
#initialize
dssr_refStudy_series = pydicom.Dataset()
dssr_refStudy_series.SeriesInstanceUID = refCT.SeriesInstanceUID
dssr_refStudy_series.ContourImageSequence = pydicom.Sequence()
# loop over slices of CT
for slc in range(len(refCT.SOPInstanceUIDs)):
dssr_refStudy_series_slc = pydicom.Dataset()
dssr_refStudy_series_slc.ReferencedSOPClassUID = refCT.SOPClassUID
dssr_refStudy_series_slc.ReferencedSOPInstanceUID = refCT.SOPInstanceUIDs[slc]
# append
dssr_refStudy_series.ContourImageSequence.append(dssr_refStudy_series_slc)
# append
dssr_refStudy.RTReferencedSeriesSequence.append(dssr_refStudy_series)
# append
dssr.RTReferencedStudySequence.append(dssr_refStudy)
#append
ds.ReferencedFrameOfReferenceSequence.append(dssr)
#
ds.StructureSetROISequence = pydicom.Sequence()
# loop over the ROIs to fill in the fields
for iroi in range(self.NumContours):
# initialize the Dataset
dssr = pydicom.Dataset()
dssr.ROINumber = iroi + 1 # because iroi starts at zero and ROINumber cannot be zero
dssr.ReferencedFrameOfReferenceUID = ds.FrameOfReferenceUID # coming from refCT
dssr.ROIName = self.Contours[iroi].ROIName
#dssr.ROIDescription # optional
dssr.ROIGenerationAlgorithm = 'AUTOMATIC' # can also be 'SEMIAUTOMATIC' OR 'MANUAL', info here https://dicom.innolitics.com/ciods/rt-structure-set/structure-set/30060020/30060036
#TODO enable a function to tell us which type of GenerationAlgorithm we have
ds.StructureSetROISequence.append(dssr)
# delete to remove space
del dssr
#TODO merge all loops into one to be faster, although like this the code is easier to follow I find
# ROI Contour
ds.ROIContourSequence = pydicom.Sequence()
# loop over the ROIs to fill in the fields
for iroi in range(self.NumContours):
# initialize the Dataset
dssr = pydicom.Dataset()
dssr.ROIDisplayColor = self.Contours[iroi].ROIDisplayColor
dssr.ReferencedROINumber = iroi + 1 # because iroi starts at zero and ReferencedROINumber cannot be zero
dssr.ContourSequence = pydicom.Sequence()
# mask to polygon
polygonMeshList = self.Contours[iroi].getROIContour()
# get z vector
z_coords = list(np.arange(self.Contours[iroi].Mask_Offset[2],self.Contours[iroi].Mask_Offset[2]+self.Contours[iroi].Mask_GridSize[2]*self.Contours[iroi].Mask_PixelSpacing[2], self.Contours[iroi].Mask_PixelSpacing[2]))
# loop over the polygonMeshList to fill in ContourSequence
for polygon in polygonMeshList:
# initialize the Dataset
dssr_slc = pydicom.Dataset()
dssr_slc.ContourGeometricType = 'CLOSED_PLANAR' # can also be 'POINT', 'OPEN_PLANAR', 'OPEN_NONPLANAR', info here https://dicom.innolitics.com/ciods/rt-structure-set/roi-contour/30060039/30060040/30060042
#TODO enable the proper selection of the ContourGeometricType
# fill in contour points and data
dssr_slc.NumberOfContourPoints = len(polygon[0::3])
#dssr_slc.ContourNumber # optional
# Smooth contour
smoothed_array_2D = Taubin_smoothing(np.transpose(np.array([polygon[0::3],polygon[1::3]])))
# fill in smoothed contour
polygon[0::3] = smoothed_array_2D[:,0]
polygon[1::3] = smoothed_array_2D[:,1]
dssr_slc.ContourData = polygon
#get slice
polygon_z = polygon[2]
slc = z_coords.index(polygon_z)
# fill in ContourImageSequence
dssr_slc.ContourImageSequence = pydicom.Sequence() # Sequence of images containing the contour
# in our case, we assume we only have one, the reference CT (refCT)
dssr_slc_ref = pydicom.Dataset()
dssr_slc_ref.ReferencedSOPClassUID = refCT.SOPClassUID
dssr_slc_ref.ReferencedSOPInstanceUID = refCT.SOPInstanceUIDs[slc]
dssr_slc.ContourImageSequence.append(dssr_slc_ref)
# append Dataset to Sequence
dssr.ContourSequence.append(dssr_slc)
# append Dataset
ds.ROIContourSequence.append(dssr)
# RT ROI Observations
ds.RTROIObservationsSequence = pydicom.Sequence()
# loop over the ROIs to fill in the fields
for iroi in range(self.NumContours):
# initialize the Dataset
dssr = pydicom.Dataset()
dssr.ObservationNumber = iroi + 1 # because iroi starts at zero and ReferencedROINumber cannot be zero
dssr.ReferencedROINumber = iroi + 1 ## because iroi starts at zero and ReferencedROINumber cannot be zero
dssr.ROIObservationLabel = self.Contours[iroi].ROIName #optional
dssr.RTROIInterpretedType = 'ORGAN' # we can have many types, see here https://dicom.innolitics.com/ciods/rt-structure-set/rt-roi-observations/30060080/300600a4
# TODO enable a better fill in of the RTROIInterpretedType
dssr.ROIInterpreter = '' # empty if unknown
# append Dataset
ds.RTROIObservationsSequence.append(dssr)
# Approval
ds.ApprovalStatus = 'UNAPPROVED'#'APPROVED'
# if ds.ApprovalStatus = 'APPROVED', then we need to fill in the reviewer information
#ds.ReviewDate = dt.strftime('%Y%m%d')
#ds.ReviewTime = dt.strftime('%H%M%S.%f')
#ds.ReviewerName = 'MIRO AI team'
# SOP common
ds.SpecificCharacterSet = 'ISO_IR 100' # conditionally required - see info here https://dicom.innolitics.com/ciods/rt-structure-set/sop-common/00080005
#ds.InstanceCreationDate # optional
#ds.InstanceCreationTime # optional
ds.SOPClassUID = '1.2.840.10008.5.1.4.1.1.481.3' #RTSTRUCT file
ds.SOPInstanceUID = SOPInstanceUID# Siri's --> pydicom.uid.generate_uid(uid_base)
#ds.InstanceNumber # optional
# save dicom file
print("Export dicom RTSTRUCT: " + outputFile)
ds.save_as(outputFile)
class ROIcontour:
def __init__(self):
self.SeriesInstanceUID = ""
self.ROIName = ""
self.ContourSequence = []
def getROIContour(self): # this is from new version of OpenTPS, I(ana) have adapted it to work with old version of self.Contours[i].Mask
try:
from skimage.measure import label, find_contours
from skimage.segmentation import find_boundaries
except:
print('Module skimage (scikit-image) not installed, ROIMask cannot be converted to ROIContour')
return 0
polygonMeshList = []
for zSlice in range(self.Mask.shape[2]):
labeledImg, numberOfLabel = label(self.Mask[:, :, zSlice], return_num=True)
for i in range(1, numberOfLabel + 1):
singleLabelImg = labeledImg == i
contours = find_contours(singleLabelImg.astype(np.uint8), level=0.6)
if len(contours) > 0:
if len(contours) == 2:
## use a different threshold in the case of an interior contour
contours2 = find_contours(singleLabelImg.astype(np.uint8), level=0.4)
interiorContour = contours2[1]
polygonMesh = []
for point in interiorContour:
xCoord = np.round(point[1]) * self.Mask_PixelSpacing[1] + self.Mask_Offset[1] # original Damien in OpenTPS
yCoord = np.round(point[0]) * self.Mask_PixelSpacing[0] + self.Mask_Offset[0] # original Damien in OpenTPS
# xCoord = np.round(point[1]) * self.Mask_PixelSpacing[0] + self.Mask_Offset[0] #AB
# yCoord = np.round(point[0]) * self.Mask_PixelSpacing[1] + self.Mask_Offset[1] #AB
zCoord = zSlice * self.Mask_PixelSpacing[2] + self.Mask_Offset[2]
polygonMesh.append(yCoord) # original Damien in OpenTPS
polygonMesh.append(xCoord) # original Damien in OpenTPS
# polygonMesh.append(xCoord) # AB
# polygonMesh.append(yCoord) # AB
polygonMesh.append(zCoord)
polygonMeshList.append(polygonMesh)
contour = contours[0]
polygonMesh = []
for point in contour:
#xCoord = np.round(point[1]) * self.Mask_PixelSpacing[1] + self.Mask_Offset[1] # original Damien in OpenTPS
#yCoord = np.round(point[0]) * self.Mask_PixelSpacing[0] + self.Mask_Offset[0] # original Damien in OpenTPS
xCoord = np.round(point[1]) * self.Mask_PixelSpacing[0] + self.Mask_Offset[0] #AB
yCoord = np.round(point[0]) * self.Mask_PixelSpacing[1] + self.Mask_Offset[1] #AB
zCoord = zSlice * self.Mask_PixelSpacing[2] + self.Mask_Offset[2]
polygonMesh.append(xCoord) # AB
polygonMesh.append(yCoord) # AB
#polygonMesh.append(yCoord) # original Damien in OpenTPS
#polygonMesh.append(xCoord) # original Damien in OpenTPS
polygonMesh.append(zCoord)
polygonMeshList.append(polygonMesh)
## I (ana) will comment this part since I will not use the class ROIContour for simplicity ###
#from opentps.core.data._roiContour import ROIContour ## this is done here to avoir circular imports issue
#contour = ROIContour(name=self.ROIName, displayColor=self.ROIDisplayColor)
#contour.polygonMesh = polygonMeshList
#return contour
# instead returning the polygonMeshList directly
return polygonMeshList
|