File size: 10,877 Bytes
b51cd04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import pydicom
import datetime
import numpy as np
import scipy
import nibabel as nib

class PatientInfo:

  def __init__(self):
    self.PatientID = ''
    self.PatientName = ''
    self.PatientBirthDate = ''
    self.PatientSex = ''

class StudyInfo:

  def __init__(self):
    self.StudyInstanceUID = ''
    self.StudyID = ''
    self.StudyDate = ''
    self.StudyTime = ''

class RTdose:

  def __init__(self):
    self.SeriesInstanceUID = ""
    self.SOPInstanceUID = ""
    self.PatientInfo = PatientInfo()
    self.StudyInfo = StudyInfo()
    self.CT_SeriesInstanceUID = ""
    self.Plan_SOPInstanceUID = ""
    self.FrameOfReferenceUID = ""
    self.ImgName = ""
    self.beam_number = "" # Beam number (str) or PLAN if sum of all
    self.DcmFile = ""
    self.isLoaded = 0
    
  def print_dose_info(self, prefix=""):
    print(prefix + "Dose: " + self.SOPInstanceUID)
    print(prefix + "   " + self.DcmFile)
    
    
    
  def import_Dicom_dose(self, CT):
    if(self.isLoaded == 1):
      print("Warning: Dose image " + self.SOPInstanceUID + " is already loaded")
      return
      
    dcm = pydicom.dcmread(self.DcmFile)
    
    self.CT_SeriesInstanceUID = CT.SeriesInstanceUID
    # self.Plan_SOPInstanceUID = dcm.ReferencedRTPlanSequence[0].ReferencedSOPInstanceUID
    
    
    if(dcm.BitsStored == 16 and dcm.PixelRepresentation == 0):
      dt = np.dtype('uint16')
    elif(dcm.BitsStored == 16 and dcm.PixelRepresentation == 1):
      dt = np.dtype('int16')
    elif(dcm.BitsStored == 32 and dcm.PixelRepresentation == 0):
      dt = np.dtype('uint32')
    elif(dcm.BitsStored == 32 and dcm.PixelRepresentation == 1):
      dt = np.dtype('int32')
    else:
      print("Error: Unknown data type for " + self.DcmFile)
      return
      
    if(dcm.HighBit == dcm.BitsStored-1):
      dt = dt.newbyteorder('L')
    else:
      dt = dt.newbyteorder('B')
      
    dose_image = np.frombuffer(dcm.PixelData, dtype=dt) 
    dose_image = dose_image.reshape((dcm.Columns, dcm.Rows, dcm.NumberOfFrames), order='F').transpose(1,0,2)
    dose_image = dose_image * dcm.DoseGridScaling
    
    self.Image = dose_image
    self.FrameOfReferenceUID = dcm.FrameOfReferenceUID
    self.ImagePositionPatient = dcm.ImagePositionPatient
    if dcm.SliceThickness is not None:
        self.PixelSpacing = [dcm.PixelSpacing[0], dcm.PixelSpacing[1], dcm.SliceThickness]
    else:
        self.PixelSpacing = [dcm.PixelSpacing[0], dcm.PixelSpacing[1], dcm.GridFrameOffsetVector[1]-dcm.GridFrameOffsetVector[0]]
    self.GridSize = [dcm.Columns, dcm.Rows, dcm.NumberOfFrames]
    self.NumVoxels = self.GridSize[0] * self.GridSize[1] * self.GridSize[2]
    
    if hasattr(dcm, 'GridFrameOffsetVector'):
      if(dcm.GridFrameOffsetVector[1] - dcm.GridFrameOffsetVector[0] < 0):
        self.Image = np.flip(self.Image, 2)
        self.ImagePositionPatient[2] = self.ImagePositionPatient[2] - self.GridSize[2]*self.PixelSpacing[2]
    
    self.resample_to_CT_grid(CT)
    self.isLoaded = 1
        
    
    
  def euclidean_dist(self, v1, v2):
    return sum((p-q)**2 for p, q in zip(v1, v2)) ** .5
    
    
      
  def resample_to_CT_grid(self, CT):
    if(self.GridSize == CT.GridSize and self.euclidean_dist(self.ImagePositionPatient, CT.ImagePositionPatient) < 0.001 and self.euclidean_dist(self.PixelSpacing, CT.PixelSpacing) < 0.001):
      return
    else:
      # anti-aliasing filter
      sigma = [0, 0, 0]
      if(CT.PixelSpacing[0] > self.PixelSpacing[0]): sigma[0] = 0.4 * (CT.PixelSpacing[0]/self.PixelSpacing[0])
      if(CT.PixelSpacing[1] > self.PixelSpacing[1]): sigma[1] = 0.4 * (CT.PixelSpacing[1]/self.PixelSpacing[1])
      if(CT.PixelSpacing[2] > self.PixelSpacing[2]): sigma[2] = 0.4 * (CT.PixelSpacing[2]/self.PixelSpacing[2])
      if(sigma != [0, 0, 0]):
        print("Image is filtered before downsampling")
        self.Image = scipy.ndimage.gaussian_filter(self.Image, sigma)

      
      print('Resample dose image to CT grid.')
    
      x = self.ImagePositionPatient[1] + np.arange(self.GridSize[1]) * self.PixelSpacing[1]
      y = self.ImagePositionPatient[0] + np.arange(self.GridSize[0]) * self.PixelSpacing[0]
      z = self.ImagePositionPatient[2] + np.arange(self.GridSize[2]) * self.PixelSpacing[2]
  
      xi = np.array(np.meshgrid(CT.VoxelY, CT.VoxelX, CT.VoxelZ))
      xi = np.rollaxis(xi, 0, 4)
      xi = xi.reshape((xi.size // 3, 3))
  
      self.Image = scipy.interpolate.interpn((x,y,z), self.Image, xi, method='linear', fill_value=0, bounds_error=False)
      self.Image = self.Image.reshape((CT.GridSize[0], CT.GridSize[1], CT.GridSize[2])).transpose(1,0,2)
  
      self.ImagePositionPatient = CT.ImagePositionPatient
      self.PixelSpacing = CT.PixelSpacing
      self.GridSize = CT.GridSize
      self.NumVoxels = CT.NumVoxels

 
  def load_from_nii(self, dose_nii):   
      
    # load the nii image
    img = nib.load(dose_nii)
    
    self.Image = img.get_fdata() ### SHOULD I TRANSPOSE?
    self.GridSize = self.Image.shape
    self.PixelSpacing = [img.header['pixdim'][1], img.header['pixdim'][2], img.header['pixdim'][3]]
    self.ImagePositionPatient = [ img.affine[0][3], img.affine[1][3], img.affine[2][3]]
    
  def export_Dicom(self, refCT, OutputFile):

    # meta data
    SOPInstanceUID = pydicom.uid.generate_uid() 
    meta = pydicom.dataset.FileMetaDataset()
    meta.MediaStorageSOPClassUID = '1.2.840.10008.5.1.4.1.1.481.2' # UID class for RTDOSE
    meta.MediaStorageSOPInstanceUID = SOPInstanceUID
    #meta.ImplementationClassUID = '1.2.826.0.1.3680043.1.2.100.5.7.0.47' # from RayStation
    #meta.ImplementationClassUID = '1.2.826.0.1.3680043.5.5.100.5.7.0.03' # modified OpenTPS
    meta.ImplementationClassUID = '1.2.826.0.1.3680043.1.2.100.6.40.0.76'# from Halcyon? st. luc breast patients
    #meta.TransferSyntaxUID = '1.2.840.10008.1.2'

    meta.FileMetaInformationGroupLength = 200
    #meta.FileMetaInformationVersion = 
    #meta.ImplementationVersionName = 'DicomObjects.NET'
    # dcm_file.ImplementationVersionName =
    # dcm_file.SoftwareVersion = 

    # dicom dataset
    dcm_file = pydicom.dataset.FileDataset(OutputFile, {}, file_meta=meta, preamble=b"\0" * 128) # CONFIRM WHAT IS OUTPUTFILE AND WHAT THIS LINE IS DOING

    # transfer syntax  
    dcm_file.file_meta.TransferSyntaxUID = pydicom.uid.ExplicitVRLittleEndian
    print(dcm_file.file_meta.TransferSyntaxUID)
    dcm_file.is_little_endian = True
    dcm_file.is_implicit_VR = False

    # Patient
    dcm_file.PatientName = refCT.PatientInfo.PatientName #self.PatientInfo.PatientName
    dcm_file.PatientID = refCT.PatientInfo.PatientID #self.PatientInfo.PatientID
    dcm_file.PatientBirthDate = refCT.PatientInfo.PatientBirthDate #self.PatientInfo.PatientBirthDate
    dcm_file.PatientSex = refCT.PatientInfo.PatientSex #self.PatientInfo.PatientSex
    
    # General Study
    dt = datetime.datetime.now()
    dcm_file.StudyDate = dt.strftime('%Y%m%d')
    dcm_file.StudyTime = dt.strftime('%H%M%S.%f')
    dcm_file.AccessionNumber = '1' # A RIS/PACS (Radiology Information System/picture archiving and communication system) generated number that identifies the order for the Study.
    dcm_file.ReferringPhysicianName = 'NA'
    dcm_file.StudyInstanceUID = refCT.StudyInfo.StudyInstanceUID # get from reference CT to indicate that they belong to the same study#self.StudyInfo.StudyInstanceUID
    dcm_file.StudyID = refCT.StudyInfo.StudyID # get from reference CT to indicate that they belong to the same study

    # RT Series
    dcm_file.Modality = 'RTDOSE'
    dcm_file.SeriesDescription = 'AI-predicted' + dt.strftime('%Y%m%d') + dt.strftime('%H%M%S.%f')#self.ImgName
    dcm_file.OperatorsName = 'MIRO'
    dcm_file.SeriesInstanceUID = pydicom.uid.generate_uid() # if we have a uid_base --> pydicom.uid.generate_uid(uid_base)
    dcm_file.SeriesNumber = 1

    # Frame of Reference
    dcm_file.FrameOfReferenceUID = refCT.FrameOfReferenceUID # pydicom.uid.generate_uid()
    dcm_file.PositionReferenceIndicator = '' #empty if unknown https://dicom.innolitics.com/ciods/rt-dose/frame-of-reference/00201040

    # General Equipment
    dcm_file.Manufacturer = 'echarp'
    #dcm_file.ManufacturerModelName = 'echarp'
    #dcm_file.PixelPaddingValue = # conditionally required! https://dicom.innolitics.com/ciods/rt-dose/general-equipment/00280120
    
    # General Image
    dcm_file.ContentDate = dt.strftime('%Y%m%d')
    dcm_file.ContentTime = dt.strftime('%H%M%S.%f')
    dcm_file.InstanceNumber = 1
    dcm_file.PatientOrientation = ''
    
    # Image Plane
    dcm_file.SliceThickness = self.PixelSpacing[2]
    dcm_file.ImagePositionPatient = self.ImagePositionPatient
    dcm_file.ImageOrientationPatient = [1, 0, 0, 0, 1, 0] # HeadFirstSupine=1,0,0,0,1,0  FeetFirstSupine=-1,0,0,0,1,0  HeadFirstProne=-1,0,0,0,-1,0  FeetFirstProne=1,0,0,0,-1,0
    dcm_file.PixelSpacing = self.PixelSpacing[0:2]
    
    # Image pixel
    dcm_file.SamplesPerPixel = 1
    dcm_file.PhotometricInterpretation = 'MONOCHROME2'
    dcm_file.Rows = self.GridSize[1]
    dcm_file.Columns = self.GridSize[0]
    dcm_file.BitsAllocated = 16
    dcm_file.BitsStored = 16
    dcm_file.HighBit = 15
    dcm_file.BitDepth = 16
    dcm_file.PixelRepresentation = 0 # 0=unsigned, 1=signed
    #dcm_file.ColorType = 'grayscale'
    
    # multi-frame
    dcm_file.NumberOfFrames = self.GridSize[2]
    dcm_file.FrameIncrementPointer = pydicom.tag.Tag((0x3004, 0x000c))
    
    # RT Dose
    dcm_file.DoseUnits = 'GY'
    dcm_file.DoseType = 'PHYSICAL' # or 'EFFECTIVE' for RBE dose (but RayStation exports physical dose even if 1.1 factor is already taken into account)
    dcm_file.DoseSummationType = 'PLAN'
    dcm_file.GridFrameOffsetVector = list(np.arange(0, self.GridSize[2]*self.PixelSpacing[2], self.PixelSpacing[2]))
    dcm_file.DoseGridScaling = self.Image.max()/(2**dcm_file.BitDepth - 1)
    # pixel data
    dcm_file.PixelData = (self.Image/dcm_file.DoseGridScaling).astype(np.uint16).transpose(2,0,1).tostring() # ALTERNATIVE: self.Image.tobytes()

    #dcm_file.TissueHeterogeneityCorrection = 'IMAGE,ROI_OVERRIDE'
    # ReferencedPlan = pydicom.dataset.Dataset()
    # ReferencedPlan.ReferencedSOPClassUID = "1.2.840.10008.5.1.4.1.1.481.8" # ion plan
    # if(plan_uid == []): ReferencedPlan.ReferencedSOPInstanceUID = self.Plan_SOPInstanceUID
    # else: ReferencedPlan.ReferencedSOPInstanceUID = plan_uid
    # dcm_file.ReferencedRTPlanSequence = pydicom.sequence.Sequence([ReferencedPlan])
    
    # SOP common
    dcm_file.SpecificCharacterSet = 'ISO_IR 100'
    dcm_file.InstanceCreationDate = dt.strftime('%Y%m%d')
    dcm_file.InstanceCreationTime = dt.strftime('%H%M%S.%f')
    dcm_file.SOPClassUID = meta.MediaStorageSOPClassUID
    dcm_file.SOPInstanceUID = SOPInstanceUID

    # save dicom file
    print("Export dicom RTDOSE: " + OutputFile)
    dcm_file.save_as(OutputFile)