from transformers import PretrainedConfig class ProSSTConfig(PretrainedConfig): model_type = "ProSST" def __init__( self, token_dropout=True, mlm_probability=0.15, vocab_size=1024, type_vocab_size=0, ss_vocab_size=0, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, mask_token_id=24, initializer_range=0.02, layer_norm_eps=1e-7, pad_token_id=0, position_biased_input=False, pooler_dropout=0, pooler_hidden_act="gelu", pos_att_type=None, position_embedding_type="relative", max_position_embeddings=1024, max_relative_positions=1024, relative_attention=False, pooling_head="mean", scale_hidden=1, **kwargs, ): super().__init__(**kwargs) self.token_dropout = token_dropout self.mlm_probability = mlm_probability self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.ss_vocab_size = ss_vocab_size self.initializer_range = initializer_range self.relative_attention = relative_attention self.max_relative_positions = max_relative_positions self.pad_token_id = pad_token_id self.position_biased_input = position_biased_input self.mask_token_id = mask_token_id self.position_embedding_type = position_embedding_type self.pooling_head = pooling_head self.scale_hidden = scale_hidden # Backwards compatibility if type(pos_att_type) == str: pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")] self.pos_att_type = pos_att_type self.vocab_size = vocab_size self.layer_norm_eps = layer_norm_eps self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size) self.pooler_dropout = pooler_dropout self.pooler_hidden_act = pooler_hidden_act ProSSTConfig.register_for_auto_class()