Wongkraiwich Chuenchomphu commited on
Commit
817a91a
·
1 Parent(s): c402da6

redo model configs

Browse files
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  Machima-openthai-llama-pretrained-7b-table-trained_safetensors/ filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  Machima-openthai-llama-pretrained-7b-table-trained_safetensors/ filter=lfs diff=lfs merge=lfs -text
37
+ model.safetensors filter=lfs diff=lfs merge=lfs -text
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/.gitattributes DELETED
@@ -1,35 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/README.md DELETED
@@ -1,13 +0,0 @@
1
- ---
2
- license: llama2
3
- language:
4
- - th
5
- - en
6
- metrics:
7
- - accuracy
8
- pipeline_tag: text-generation
9
- tags:
10
- - openthai
11
- - pytorch
12
- library_name: transformers
13
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/config.json DELETED
@@ -1,29 +0,0 @@
1
- {
2
- "_name_or_path": "/project/lt900048-ai24tn/models/openthaigpt/openthai-llama-21000",
3
- "architectures": [
4
- "LlamaForCausalLM"
5
- ],
6
- "attention_bias": false,
7
- "attention_dropout": 0.0,
8
- "bos_token_id": 1,
9
- "eos_token_id": 2,
10
- "hidden_act": "silu",
11
- "hidden_size": 4096,
12
- "initializer_range": 0.02,
13
- "intermediate_size": 11008,
14
- "max_position_embeddings": 4096,
15
- "model_type": "llama",
16
- "num_attention_heads": 32,
17
- "num_hidden_layers": 32,
18
- "num_key_value_heads": 32,
19
- "pad_token_id": 0,
20
- "pretraining_tp": 1,
21
- "rms_norm_eps": 1e-05,
22
- "rope_scaling": null,
23
- "rope_theta": 10000.0,
24
- "tie_word_embeddings": false,
25
- "torch_dtype": "float32",
26
- "transformers_version": "4.40.1",
27
- "use_cache": true,
28
- "vocab_size": 56541
29
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/generation_config.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "bos_token_id": 1,
4
- "eos_token_id": 2,
5
- "pad_token_id": 0,
6
- "transformers_version": "4.40.1"
7
- }
 
 
 
 
 
 
 
 
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/latest DELETED
@@ -1 +0,0 @@
1
- global_step75
 
 
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cac292d021463776d3c6cf001b131c8cfee5c2e4e9b07b3f30143272bf860860
3
- size 13878944720
 
 
 
 
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/special_tokens_map.json DELETED
@@ -1,24 +0,0 @@
1
- {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "eos_token": {
10
- "content": "</s>",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "pad_token": "</s>",
17
- "unk_token": {
18
- "content": "<unk>",
19
- "lstrip": false,
20
- "normalized": false,
21
- "rstrip": false,
22
- "single_word": false
23
- }
24
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/tokenizer.model DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:77901fd826845fd170d28f7c5eb4edf599ee7baa58e9e1c5bd4f527ca26f4893
3
- size 1167962
 
 
 
 
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/tokenizer_config.json DELETED
@@ -1,44 +0,0 @@
1
- {
2
- "add_bos_token": true,
3
- "add_eos_token": false,
4
- "add_prefix_space": true,
5
- "added_tokens_decoder": {
6
- "0": {
7
- "content": "<unk>",
8
- "lstrip": false,
9
- "normalized": false,
10
- "rstrip": false,
11
- "single_word": false,
12
- "special": true
13
- },
14
- "1": {
15
- "content": "<s>",
16
- "lstrip": false,
17
- "normalized": false,
18
- "rstrip": false,
19
- "single_word": false,
20
- "special": true
21
- },
22
- "2": {
23
- "content": "</s>",
24
- "lstrip": false,
25
- "normalized": false,
26
- "rstrip": false,
27
- "single_word": false,
28
- "special": true
29
- }
30
- },
31
- "bos_token": "<s>",
32
- "clean_up_tokenization_spaces": false,
33
- "eos_token": "</s>",
34
- "legacy": true,
35
- "model_max_length": 2048,
36
- "pad_token": "</s>",
37
- "padding_side": "right",
38
- "sp_model_kwargs": {},
39
- "spaces_between_special_tokens": false,
40
- "tokenizer_class": "LlamaTokenizer",
41
- "unk_token": "<unk>",
42
- "use_default_system_prompt": true,
43
- "use_fast": false
44
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/trainer_state.json DELETED
@@ -1,555 +0,0 @@
1
- {
2
- "best_metric": null,
3
- "best_model_checkpoint": null,
4
- "epoch": 3.0,
5
- "eval_steps": 500,
6
- "global_step": 75,
7
- "is_hyper_param_search": false,
8
- "is_local_process_zero": true,
9
- "is_world_process_zero": true,
10
- "log_history": [
11
- {
12
- "epoch": 0.04,
13
- "grad_norm": 20.00289492370743,
14
- "learning_rate": 0.0,
15
- "loss": 1.5756,
16
- "step": 1
17
- },
18
- {
19
- "epoch": 0.08,
20
- "grad_norm": 169.81482789708753,
21
- "learning_rate": 5e-05,
22
- "loss": 14.3496,
23
- "step": 2
24
- },
25
- {
26
- "epoch": 0.12,
27
- "grad_norm": 170.94221266882175,
28
- "learning_rate": 7.924812503605781e-05,
29
- "loss": 14.3495,
30
- "step": 3
31
- },
32
- {
33
- "epoch": 0.16,
34
- "grad_norm": 96.07266456886373,
35
- "learning_rate": 0.0001,
36
- "loss": 5.728,
37
- "step": 4
38
- },
39
- {
40
- "epoch": 0.2,
41
- "grad_norm": 74.89495923839695,
42
- "learning_rate": 0.0001,
43
- "loss": 3.198,
44
- "step": 5
45
- },
46
- {
47
- "epoch": 0.24,
48
- "grad_norm": 16.06625851910231,
49
- "learning_rate": 9.859154929577466e-05,
50
- "loss": 1.711,
51
- "step": 6
52
- },
53
- {
54
- "epoch": 0.28,
55
- "grad_norm": 11.432322037094815,
56
- "learning_rate": 9.718309859154931e-05,
57
- "loss": 1.1097,
58
- "step": 7
59
- },
60
- {
61
- "epoch": 0.32,
62
- "grad_norm": 10.90988949596415,
63
- "learning_rate": 9.577464788732394e-05,
64
- "loss": 1.1647,
65
- "step": 8
66
- },
67
- {
68
- "epoch": 0.36,
69
- "grad_norm": 5.166602608719267,
70
- "learning_rate": 9.43661971830986e-05,
71
- "loss": 0.6874,
72
- "step": 9
73
- },
74
- {
75
- "epoch": 0.4,
76
- "grad_norm": 5.063308573446352,
77
- "learning_rate": 9.295774647887325e-05,
78
- "loss": 0.6268,
79
- "step": 10
80
- },
81
- {
82
- "epoch": 0.44,
83
- "grad_norm": 7.227736963113414,
84
- "learning_rate": 9.15492957746479e-05,
85
- "loss": 0.5151,
86
- "step": 11
87
- },
88
- {
89
- "epoch": 0.48,
90
- "grad_norm": 4.259327811156309,
91
- "learning_rate": 9.014084507042254e-05,
92
- "loss": 0.4389,
93
- "step": 12
94
- },
95
- {
96
- "epoch": 0.52,
97
- "grad_norm": 6.156983867098677,
98
- "learning_rate": 8.873239436619719e-05,
99
- "loss": 0.5211,
100
- "step": 13
101
- },
102
- {
103
- "epoch": 0.56,
104
- "grad_norm": 5.241850109217824,
105
- "learning_rate": 8.732394366197182e-05,
106
- "loss": 0.3401,
107
- "step": 14
108
- },
109
- {
110
- "epoch": 0.6,
111
- "grad_norm": 45.75950192245342,
112
- "learning_rate": 8.591549295774647e-05,
113
- "loss": 0.6114,
114
- "step": 15
115
- },
116
- {
117
- "epoch": 0.64,
118
- "grad_norm": 12.747985157681715,
119
- "learning_rate": 8.450704225352113e-05,
120
- "loss": 0.4109,
121
- "step": 16
122
- },
123
- {
124
- "epoch": 0.68,
125
- "grad_norm": 6.204387028637272,
126
- "learning_rate": 8.309859154929578e-05,
127
- "loss": 0.3238,
128
- "step": 17
129
- },
130
- {
131
- "epoch": 0.72,
132
- "grad_norm": 1.784294966675183,
133
- "learning_rate": 8.169014084507043e-05,
134
- "loss": 0.2746,
135
- "step": 18
136
- },
137
- {
138
- "epoch": 0.76,
139
- "grad_norm": 1.0640451461171732,
140
- "learning_rate": 8.028169014084508e-05,
141
- "loss": 0.2216,
142
- "step": 19
143
- },
144
- {
145
- "epoch": 0.8,
146
- "grad_norm": 2.247533777438539,
147
- "learning_rate": 7.887323943661972e-05,
148
- "loss": 0.2169,
149
- "step": 20
150
- },
151
- {
152
- "epoch": 0.84,
153
- "grad_norm": 0.5843446520161867,
154
- "learning_rate": 7.746478873239437e-05,
155
- "loss": 0.2063,
156
- "step": 21
157
- },
158
- {
159
- "epoch": 0.88,
160
- "grad_norm": 0.6140022871361251,
161
- "learning_rate": 7.605633802816902e-05,
162
- "loss": 0.1924,
163
- "step": 22
164
- },
165
- {
166
- "epoch": 0.92,
167
- "grad_norm": 0.6328264593401415,
168
- "learning_rate": 7.464788732394367e-05,
169
- "loss": 0.1687,
170
- "step": 23
171
- },
172
- {
173
- "epoch": 0.96,
174
- "grad_norm": 0.47188590510134204,
175
- "learning_rate": 7.323943661971832e-05,
176
- "loss": 0.1502,
177
- "step": 24
178
- },
179
- {
180
- "epoch": 1.0,
181
- "grad_norm": 0.4569187747764233,
182
- "learning_rate": 7.183098591549297e-05,
183
- "loss": 0.1322,
184
- "step": 25
185
- },
186
- {
187
- "epoch": 1.04,
188
- "grad_norm": 0.5022295511205257,
189
- "learning_rate": 7.042253521126761e-05,
190
- "loss": 0.1283,
191
- "step": 26
192
- },
193
- {
194
- "epoch": 1.08,
195
- "grad_norm": 0.32747245962381083,
196
- "learning_rate": 6.901408450704226e-05,
197
- "loss": 0.105,
198
- "step": 27
199
- },
200
- {
201
- "epoch": 1.12,
202
- "grad_norm": 0.4071591561018996,
203
- "learning_rate": 6.76056338028169e-05,
204
- "loss": 0.1127,
205
- "step": 28
206
- },
207
- {
208
- "epoch": 1.16,
209
- "grad_norm": 0.4886479527811691,
210
- "learning_rate": 6.619718309859155e-05,
211
- "loss": 0.1097,
212
- "step": 29
213
- },
214
- {
215
- "epoch": 1.2,
216
- "grad_norm": 0.34862267892547183,
217
- "learning_rate": 6.47887323943662e-05,
218
- "loss": 0.1007,
219
- "step": 30
220
- },
221
- {
222
- "epoch": 1.24,
223
- "grad_norm": 0.33123650236209157,
224
- "learning_rate": 6.338028169014085e-05,
225
- "loss": 0.0945,
226
- "step": 31
227
- },
228
- {
229
- "epoch": 1.28,
230
- "grad_norm": 0.3246463353672584,
231
- "learning_rate": 6.197183098591549e-05,
232
- "loss": 0.0957,
233
- "step": 32
234
- },
235
- {
236
- "epoch": 1.32,
237
- "grad_norm": 0.3503498413159293,
238
- "learning_rate": 6.056338028169014e-05,
239
- "loss": 0.1007,
240
- "step": 33
241
- },
242
- {
243
- "epoch": 1.3599999999999999,
244
- "grad_norm": 0.2994313557882548,
245
- "learning_rate": 5.915492957746479e-05,
246
- "loss": 0.0961,
247
- "step": 34
248
- },
249
- {
250
- "epoch": 1.4,
251
- "grad_norm": 0.3098559906263102,
252
- "learning_rate": 5.774647887323944e-05,
253
- "loss": 0.0891,
254
- "step": 35
255
- },
256
- {
257
- "epoch": 1.44,
258
- "grad_norm": 0.3320370344139516,
259
- "learning_rate": 5.633802816901409e-05,
260
- "loss": 0.093,
261
- "step": 36
262
- },
263
- {
264
- "epoch": 1.48,
265
- "grad_norm": 0.2975761075734135,
266
- "learning_rate": 5.492957746478874e-05,
267
- "loss": 0.0824,
268
- "step": 37
269
- },
270
- {
271
- "epoch": 1.52,
272
- "grad_norm": 0.2609696051747955,
273
- "learning_rate": 5.352112676056338e-05,
274
- "loss": 0.0849,
275
- "step": 38
276
- },
277
- {
278
- "epoch": 1.56,
279
- "grad_norm": 0.2746218271104525,
280
- "learning_rate": 5.2112676056338026e-05,
281
- "loss": 0.0812,
282
- "step": 39
283
- },
284
- {
285
- "epoch": 1.6,
286
- "grad_norm": 0.27280756684282476,
287
- "learning_rate": 5.070422535211268e-05,
288
- "loss": 0.0857,
289
- "step": 40
290
- },
291
- {
292
- "epoch": 1.6400000000000001,
293
- "grad_norm": 0.3333732319784279,
294
- "learning_rate": 4.929577464788733e-05,
295
- "loss": 0.083,
296
- "step": 41
297
- },
298
- {
299
- "epoch": 1.6800000000000002,
300
- "grad_norm": 0.28187480716143415,
301
- "learning_rate": 4.788732394366197e-05,
302
- "loss": 0.0805,
303
- "step": 42
304
- },
305
- {
306
- "epoch": 1.72,
307
- "grad_norm": 0.25874624247743283,
308
- "learning_rate": 4.647887323943662e-05,
309
- "loss": 0.0806,
310
- "step": 43
311
- },
312
- {
313
- "epoch": 1.76,
314
- "grad_norm": 0.28417848530718226,
315
- "learning_rate": 4.507042253521127e-05,
316
- "loss": 0.0776,
317
- "step": 44
318
- },
319
- {
320
- "epoch": 1.8,
321
- "grad_norm": 0.24698649624452082,
322
- "learning_rate": 4.366197183098591e-05,
323
- "loss": 0.0765,
324
- "step": 45
325
- },
326
- {
327
- "epoch": 1.8399999999999999,
328
- "grad_norm": 0.23537664520973256,
329
- "learning_rate": 4.225352112676056e-05,
330
- "loss": 0.0758,
331
- "step": 46
332
- },
333
- {
334
- "epoch": 1.88,
335
- "grad_norm": 0.2534413438607467,
336
- "learning_rate": 4.0845070422535214e-05,
337
- "loss": 0.0804,
338
- "step": 47
339
- },
340
- {
341
- "epoch": 1.92,
342
- "grad_norm": 0.20702488497520458,
343
- "learning_rate": 3.943661971830986e-05,
344
- "loss": 0.0715,
345
- "step": 48
346
- },
347
- {
348
- "epoch": 1.96,
349
- "grad_norm": 0.2613262372736133,
350
- "learning_rate": 3.802816901408451e-05,
351
- "loss": 0.084,
352
- "step": 49
353
- },
354
- {
355
- "epoch": 2.0,
356
- "grad_norm": 0.22492435603929029,
357
- "learning_rate": 3.661971830985916e-05,
358
- "loss": 0.0556,
359
- "step": 50
360
- },
361
- {
362
- "epoch": 2.04,
363
- "grad_norm": 0.2611962185259755,
364
- "learning_rate": 3.5211267605633805e-05,
365
- "loss": 0.0481,
366
- "step": 51
367
- },
368
- {
369
- "epoch": 2.08,
370
- "grad_norm": 0.15962947759230994,
371
- "learning_rate": 3.380281690140845e-05,
372
- "loss": 0.0449,
373
- "step": 52
374
- },
375
- {
376
- "epoch": 2.12,
377
- "grad_norm": 0.1694677846392973,
378
- "learning_rate": 3.23943661971831e-05,
379
- "loss": 0.0482,
380
- "step": 53
381
- },
382
- {
383
- "epoch": 2.16,
384
- "grad_norm": 0.1438746814861677,
385
- "learning_rate": 3.0985915492957744e-05,
386
- "loss": 0.0425,
387
- "step": 54
388
- },
389
- {
390
- "epoch": 2.2,
391
- "grad_norm": 0.17430208968882352,
392
- "learning_rate": 2.9577464788732395e-05,
393
- "loss": 0.043,
394
- "step": 55
395
- },
396
- {
397
- "epoch": 2.24,
398
- "grad_norm": 0.17207620385513733,
399
- "learning_rate": 2.8169014084507046e-05,
400
- "loss": 0.0449,
401
- "step": 56
402
- },
403
- {
404
- "epoch": 2.2800000000000002,
405
- "grad_norm": 0.18001842523178951,
406
- "learning_rate": 2.676056338028169e-05,
407
- "loss": 0.0407,
408
- "step": 57
409
- },
410
- {
411
- "epoch": 2.32,
412
- "grad_norm": 0.20877963876068653,
413
- "learning_rate": 2.535211267605634e-05,
414
- "loss": 0.0418,
415
- "step": 58
416
- },
417
- {
418
- "epoch": 2.36,
419
- "grad_norm": 0.2086206476860082,
420
- "learning_rate": 2.3943661971830986e-05,
421
- "loss": 0.0432,
422
- "step": 59
423
- },
424
- {
425
- "epoch": 2.4,
426
- "grad_norm": 0.18489125316064906,
427
- "learning_rate": 2.2535211267605634e-05,
428
- "loss": 0.0443,
429
- "step": 60
430
- },
431
- {
432
- "epoch": 2.44,
433
- "grad_norm": 0.18836568321121092,
434
- "learning_rate": 2.112676056338028e-05,
435
- "loss": 0.0416,
436
- "step": 61
437
- },
438
- {
439
- "epoch": 2.48,
440
- "grad_norm": 0.18671273407693323,
441
- "learning_rate": 1.971830985915493e-05,
442
- "loss": 0.0392,
443
- "step": 62
444
- },
445
- {
446
- "epoch": 2.52,
447
- "grad_norm": 0.183141175658178,
448
- "learning_rate": 1.830985915492958e-05,
449
- "loss": 0.0406,
450
- "step": 63
451
- },
452
- {
453
- "epoch": 2.56,
454
- "grad_norm": 0.19023565118928507,
455
- "learning_rate": 1.6901408450704224e-05,
456
- "loss": 0.0392,
457
- "step": 64
458
- },
459
- {
460
- "epoch": 2.6,
461
- "grad_norm": 0.1734836339026565,
462
- "learning_rate": 1.5492957746478872e-05,
463
- "loss": 0.0408,
464
- "step": 65
465
- },
466
- {
467
- "epoch": 2.64,
468
- "grad_norm": 0.2124529691628785,
469
- "learning_rate": 1.4084507042253523e-05,
470
- "loss": 0.0402,
471
- "step": 66
472
- },
473
- {
474
- "epoch": 2.68,
475
- "grad_norm": 0.16929391483607104,
476
- "learning_rate": 1.267605633802817e-05,
477
- "loss": 0.0422,
478
- "step": 67
479
- },
480
- {
481
- "epoch": 2.7199999999999998,
482
- "grad_norm": 0.1865969813928253,
483
- "learning_rate": 1.1267605633802817e-05,
484
- "loss": 0.0423,
485
- "step": 68
486
- },
487
- {
488
- "epoch": 2.76,
489
- "grad_norm": 0.19199511508921327,
490
- "learning_rate": 9.859154929577465e-06,
491
- "loss": 0.0428,
492
- "step": 69
493
- },
494
- {
495
- "epoch": 2.8,
496
- "grad_norm": 0.15471843235506497,
497
- "learning_rate": 8.450704225352112e-06,
498
- "loss": 0.0383,
499
- "step": 70
500
- },
501
- {
502
- "epoch": 2.84,
503
- "grad_norm": 0.17211726924185472,
504
- "learning_rate": 7.042253521126762e-06,
505
- "loss": 0.0422,
506
- "step": 71
507
- },
508
- {
509
- "epoch": 2.88,
510
- "grad_norm": 0.16597891624795819,
511
- "learning_rate": 5.6338028169014084e-06,
512
- "loss": 0.0358,
513
- "step": 72
514
- },
515
- {
516
- "epoch": 2.92,
517
- "grad_norm": 0.16696499746864643,
518
- "learning_rate": 4.225352112676056e-06,
519
- "loss": 0.0384,
520
- "step": 73
521
- },
522
- {
523
- "epoch": 2.96,
524
- "grad_norm": 0.16841918706948866,
525
- "learning_rate": 2.8169014084507042e-06,
526
- "loss": 0.0399,
527
- "step": 74
528
- },
529
- {
530
- "epoch": 3.0,
531
- "grad_norm": 0.12380367991746002,
532
- "learning_rate": 1.4084507042253521e-06,
533
- "loss": 0.0275,
534
- "step": 75
535
- },
536
- {
537
- "epoch": 3.0,
538
- "step": 75,
539
- "total_flos": 175054227243008.0,
540
- "train_loss": 0.6997585766762495,
541
- "train_runtime": 937.3587,
542
- "train_samples_per_second": 103.388,
543
- "train_steps_per_second": 0.08
544
- }
545
- ],
546
- "logging_steps": 1.0,
547
- "max_steps": 75,
548
- "num_input_tokens_seen": 0,
549
- "num_train_epochs": 3,
550
- "save_steps": 500,
551
- "total_flos": 175054227243008.0,
552
- "train_batch_size": 12,
553
- "trial_name": null,
554
- "trial_params": null
555
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d7fc176810fd9b3cd41a111aa8142543838dc193aad79a2d257a1ff5b70e73dc
3
- size 7032
 
 
 
 
zero_to_fp32.py DELETED
@@ -1,604 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example: python zero_to_fp32.py . pytorch_model.bin
14
-
15
- import argparse
16
- import torch
17
- import glob
18
- import math
19
- import os
20
- import re
21
- from collections import OrderedDict
22
- from dataclasses import dataclass
23
-
24
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
- # DeepSpeed data structures it has to be available in the current python environment.
26
- from deepspeed.utils import logger
27
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
-
31
-
32
- @dataclass
33
- class zero_model_state:
34
- buffers: dict()
35
- param_shapes: dict()
36
- shared_params: list
37
- ds_version: int
38
- frozen_param_shapes: dict()
39
- frozen_param_fragments: dict()
40
-
41
-
42
- debug = 0
43
-
44
- # load to cpu
45
- device = torch.device('cpu')
46
-
47
-
48
- def atoi(text):
49
- return int(text) if text.isdigit() else text
50
-
51
-
52
- def natural_keys(text):
53
- '''
54
- alist.sort(key=natural_keys) sorts in human order
55
- http://nedbatchelder.com/blog/200712/human_sorting.html
56
- (See Toothy's implementation in the comments)
57
- '''
58
- return [atoi(c) for c in re.split(r'(\d+)', text)]
59
-
60
-
61
- def get_model_state_file(checkpoint_dir, zero_stage):
62
- if not os.path.isdir(checkpoint_dir):
63
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
-
65
- # there should be only one file
66
- if zero_stage <= 2:
67
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
- elif zero_stage == 3:
69
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
-
71
- if not os.path.exists(file):
72
- raise FileNotFoundError(f"can't find model states file at '{file}'")
73
-
74
- return file
75
-
76
-
77
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
- # XXX: need to test that this simple glob rule works for multi-node setup too
79
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
-
81
- if len(ckpt_files) == 0:
82
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
-
84
- return ckpt_files
85
-
86
-
87
- def get_optim_files(checkpoint_dir):
88
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
-
90
-
91
- def get_model_state_files(checkpoint_dir):
92
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
-
94
-
95
- def parse_model_states(files):
96
- zero_model_states = []
97
- for file in files:
98
- state_dict = torch.load(file, map_location=device)
99
-
100
- if BUFFER_NAMES not in state_dict:
101
- raise ValueError(f"{file} is not a model state checkpoint")
102
- buffer_names = state_dict[BUFFER_NAMES]
103
- if debug:
104
- print("Found buffers:", buffer_names)
105
-
106
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
- param_shapes = state_dict[PARAM_SHAPES]
109
-
110
- # collect parameters that are included in param_shapes
111
- param_names = []
112
- for s in param_shapes:
113
- for name in s.keys():
114
- param_names.append(name)
115
-
116
- # update with frozen parameters
117
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
- if frozen_param_shapes is not None:
119
- if debug:
120
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
- param_names += list(frozen_param_shapes.keys())
122
-
123
- # handle shared params
124
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
-
126
- ds_version = state_dict.get(DS_VERSION, None)
127
-
128
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
-
130
- z_model_state = zero_model_state(buffers=buffers,
131
- param_shapes=param_shapes,
132
- shared_params=shared_params,
133
- ds_version=ds_version,
134
- frozen_param_shapes=frozen_param_shapes,
135
- frozen_param_fragments=frozen_param_fragments)
136
- zero_model_states.append(z_model_state)
137
-
138
- return zero_model_states
139
-
140
-
141
- def parse_optim_states(files, ds_checkpoint_dir):
142
-
143
- total_files = len(files)
144
- state_dicts = []
145
- for f in files:
146
- state_dict = torch.load(f, map_location=device)
147
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
- # and also handle the case where it was already removed by another helper script
149
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
- state_dicts.append(state_dict)
151
-
152
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
- raise ValueError(f"{files[0]} is not a zero checkpoint")
154
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
-
157
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
- # parameters can be different from data parallelism for non-expert parameters. So we can just
159
- # use the max of the partition_count to get the dp world_size.
160
-
161
- if type(world_size) is list:
162
- world_size = max(world_size)
163
-
164
- if world_size != total_files:
165
- raise ValueError(
166
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
- )
169
-
170
- # the groups are named differently in each stage
171
- if zero_stage <= 2:
172
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
- elif zero_stage == 3:
174
- fp32_groups_key = FP32_FLAT_GROUPS
175
- else:
176
- raise ValueError(f"unknown zero stage {zero_stage}")
177
-
178
- if zero_stage <= 2:
179
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
- elif zero_stage == 3:
181
- # if there is more than one param group, there will be multiple flattened tensors - one
182
- # flattened tensor per group - for simplicity merge them into a single tensor
183
- #
184
- # XXX: could make the script more memory efficient for when there are multiple groups - it
185
- # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
-
187
- fp32_flat_groups = [
188
- torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
- ]
190
-
191
- return zero_stage, world_size, fp32_flat_groups
192
-
193
-
194
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
- """
196
- Returns fp32 state_dict reconstructed from ds checkpoint
197
-
198
- Args:
199
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
-
201
- """
202
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
-
204
- optim_files = get_optim_files(ds_checkpoint_dir)
205
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
-
208
- model_files = get_model_state_files(ds_checkpoint_dir)
209
-
210
- zero_model_states = parse_model_states(model_files)
211
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
-
213
- if zero_stage <= 2:
214
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
- exclude_frozen_parameters)
216
- elif zero_stage == 3:
217
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
- exclude_frozen_parameters)
219
-
220
-
221
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
- return
224
-
225
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
-
228
- if debug:
229
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
-
232
- wanted_params = len(frozen_param_shapes)
233
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
- print(f'Frozen params: Have {avail_numel} numels to process.')
236
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
-
238
- total_params = 0
239
- total_numel = 0
240
- for name, shape in frozen_param_shapes.items():
241
- total_params += 1
242
- unpartitioned_numel = shape.numel()
243
- total_numel += unpartitioned_numel
244
-
245
- state_dict[name] = frozen_param_fragments[name]
246
-
247
- if debug:
248
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
-
250
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
-
252
-
253
- def _has_callable(obj, fn):
254
- attr = getattr(obj, fn, None)
255
- return callable(attr)
256
-
257
-
258
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
- param_shapes = zero_model_states[0].param_shapes
260
-
261
- # Reconstruction protocol:
262
- #
263
- # XXX: document this
264
-
265
- if debug:
266
- for i in range(world_size):
267
- for j in range(len(fp32_flat_groups[0])):
268
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
-
270
- # XXX: memory usage doubles here (zero2)
271
- num_param_groups = len(fp32_flat_groups[0])
272
- merged_single_partition_of_fp32_groups = []
273
- for i in range(num_param_groups):
274
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
- avail_numel = sum(
278
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
-
280
- if debug:
281
- wanted_params = sum([len(shapes) for shapes in param_shapes])
282
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
- # not asserting if there is a mismatch due to possible padding
284
- print(f"Have {avail_numel} numels to process.")
285
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
-
287
- # params
288
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
- # out-of-core computing solution
290
- total_numel = 0
291
- total_params = 0
292
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
- offset = 0
294
- avail_numel = full_single_fp32_vector.numel()
295
- for name, shape in shapes.items():
296
-
297
- unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
- total_numel += unpartitioned_numel
299
- total_params += 1
300
-
301
- if debug:
302
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
- offset += unpartitioned_numel
305
-
306
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
- # live optimizer object, so we are checking that the numbers are within the right range
310
- align_to = 2 * world_size
311
-
312
- def zero2_align(x):
313
- return align_to * math.ceil(x / align_to)
314
-
315
- if debug:
316
- print(f"original offset={offset}, avail_numel={avail_numel}")
317
-
318
- offset = zero2_align(offset)
319
- avail_numel = zero2_align(avail_numel)
320
-
321
- if debug:
322
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
-
324
- # Sanity check
325
- if offset != avail_numel:
326
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
-
328
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
-
330
-
331
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
- exclude_frozen_parameters):
333
- state_dict = OrderedDict()
334
-
335
- # buffers
336
- buffers = zero_model_states[0].buffers
337
- state_dict.update(buffers)
338
- if debug:
339
- print(f"added {len(buffers)} buffers")
340
-
341
- if not exclude_frozen_parameters:
342
- _zero2_merge_frozen_params(state_dict, zero_model_states)
343
-
344
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
-
346
- # recover shared parameters
347
- for pair in zero_model_states[0].shared_params:
348
- if pair[1] in state_dict:
349
- state_dict[pair[0]] = state_dict[pair[1]]
350
-
351
- return state_dict
352
-
353
-
354
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
- remainder = unpartitioned_numel % world_size
356
- padding_numel = (world_size - remainder) if remainder else 0
357
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
- return partitioned_numel, padding_numel
359
-
360
-
361
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
- return
364
-
365
- if debug:
366
- for i in range(world_size):
367
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
-
370
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
- wanted_params = len(frozen_param_shapes)
372
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
- print(f'Frozen params: Have {avail_numel} numels to process.')
375
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
-
377
- total_params = 0
378
- total_numel = 0
379
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
- total_params += 1
381
- unpartitioned_numel = shape.numel()
382
- total_numel += unpartitioned_numel
383
-
384
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
-
387
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
-
389
- if debug:
390
- print(
391
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
- )
393
-
394
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
-
396
-
397
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
- param_shapes = zero_model_states[0].param_shapes
399
- avail_numel = fp32_flat_groups[0].numel() * world_size
400
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
- # param, re-consolidating each param, while dealing with padding if any
402
-
403
- # merge list of dicts, preserving order
404
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
-
406
- if debug:
407
- for i in range(world_size):
408
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
-
410
- wanted_params = len(param_shapes)
411
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
- # not asserting if there is a mismatch due to possible padding
413
- avail_numel = fp32_flat_groups[0].numel() * world_size
414
- print(f"Trainable params: Have {avail_numel} numels to process.")
415
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
-
417
- # params
418
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
- # out-of-core computing solution
420
- offset = 0
421
- total_numel = 0
422
- total_params = 0
423
- for name, shape in param_shapes.items():
424
-
425
- unpartitioned_numel = shape.numel()
426
- total_numel += unpartitioned_numel
427
- total_params += 1
428
-
429
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
-
431
- if debug:
432
- print(
433
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
- )
435
-
436
- # XXX: memory usage doubles here
437
- state_dict[name] = torch.cat(
438
- tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
- 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
- offset += partitioned_numel
441
-
442
- offset *= world_size
443
-
444
- # Sanity check
445
- if offset != avail_numel:
446
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
-
448
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
-
450
-
451
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
- exclude_frozen_parameters):
453
- state_dict = OrderedDict()
454
-
455
- # buffers
456
- buffers = zero_model_states[0].buffers
457
- state_dict.update(buffers)
458
- if debug:
459
- print(f"added {len(buffers)} buffers")
460
-
461
- if not exclude_frozen_parameters:
462
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
-
464
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
-
466
- # recover shared parameters
467
- for pair in zero_model_states[0].shared_params:
468
- if pair[1] in state_dict:
469
- state_dict[pair[0]] = state_dict[pair[1]]
470
-
471
- return state_dict
472
-
473
-
474
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
- """
476
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
- via a model hub.
479
-
480
- Args:
481
- - ``checkpoint_dir``: path to the desired checkpoint folder
482
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
- - ``exclude_frozen_parameters``: exclude frozen parameters
484
-
485
- Returns:
486
- - pytorch ``state_dict``
487
-
488
- Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
- you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
- the checkpoint.
491
-
492
- A typical usage might be ::
493
-
494
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
- # do the training and checkpoint saving
496
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
- model = model.cpu() # move to cpu
498
- model.load_state_dict(state_dict)
499
- # submit to model hub or save the model to share with others
500
-
501
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
- application. i.e. you will need to re-initialize the deepspeed engine, since
503
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
-
505
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
-
507
- """
508
- if tag is None:
509
- latest_path = os.path.join(checkpoint_dir, 'latest')
510
- if os.path.isfile(latest_path):
511
- with open(latest_path, 'r') as fd:
512
- tag = fd.read().strip()
513
- else:
514
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
-
516
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
-
518
- if not os.path.isdir(ds_checkpoint_dir):
519
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
-
521
- return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
-
523
-
524
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
- """
526
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
-
529
- Args:
530
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
- - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
- - ``exclude_frozen_parameters``: exclude frozen parameters
534
- """
535
-
536
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
- print(f"Saving fp32 state dict to {output_file}")
538
- torch.save(state_dict, output_file)
539
-
540
-
541
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
- """
543
- 1. Put the provided model to cpu
544
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
- 3. Load it into the provided model
546
-
547
- Args:
548
- - ``model``: the model object to update
549
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
-
552
- Returns:
553
- - ``model`: modified model
554
-
555
- Make sure you have plenty of CPU memory available before you call this function. If you don't
556
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
- conveniently placed for you in the checkpoint folder.
558
-
559
- A typical usage might be ::
560
-
561
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
- # submit to model hub or save the model to share with others
564
-
565
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
-
569
- """
570
- logger.info(f"Extracting fp32 weights")
571
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
-
573
- logger.info(f"Overwriting model with fp32 weights")
574
- model = model.cpu()
575
- model.load_state_dict(state_dict, strict=False)
576
-
577
- return model
578
-
579
-
580
- if __name__ == "__main__":
581
-
582
- parser = argparse.ArgumentParser()
583
- parser.add_argument("checkpoint_dir",
584
- type=str,
585
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
- parser.add_argument(
587
- "output_file",
588
- type=str,
589
- help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
- parser.add_argument("-t",
591
- "--tag",
592
- type=str,
593
- default=None,
594
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
- parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
- args = parser.parse_args()
598
-
599
- debug = args.debug
600
-
601
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
- args.output_file,
603
- tag=args.tag,
604
- exclude_frozen_parameters=args.exclude_frozen_parameters)