Wongkraiwich Chuenchomphu
commited on
Commit
·
817a91a
1
Parent(s):
c402da6
redo model configs
Browse files- .gitattributes +1 -0
- Machima-openthai-llama-pretrained-7b-table-trained_safetensors/.gitattributes +0 -35
- Machima-openthai-llama-pretrained-7b-table-trained_safetensors/README.md +0 -13
- Machima-openthai-llama-pretrained-7b-table-trained_safetensors/config.json +0 -29
- Machima-openthai-llama-pretrained-7b-table-trained_safetensors/generation_config.json +0 -7
- Machima-openthai-llama-pretrained-7b-table-trained_safetensors/latest +0 -1
- Machima-openthai-llama-pretrained-7b-table-trained_safetensors/model.safetensors +0 -3
- Machima-openthai-llama-pretrained-7b-table-trained_safetensors/special_tokens_map.json +0 -24
- Machima-openthai-llama-pretrained-7b-table-trained_safetensors/tokenizer.model +0 -3
- Machima-openthai-llama-pretrained-7b-table-trained_safetensors/tokenizer_config.json +0 -44
- Machima-openthai-llama-pretrained-7b-table-trained_safetensors/trainer_state.json +0 -555
- training_args.bin +0 -3
- zero_to_fp32.py +0 -604
.gitattributes
CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/ filter=lfs diff=lfs merge=lfs -text
|
|
|
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/ filter=lfs diff=lfs merge=lfs -text
|
37 |
+
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/.gitattributes
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/README.md
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
---
|
2 |
-
license: llama2
|
3 |
-
language:
|
4 |
-
- th
|
5 |
-
- en
|
6 |
-
metrics:
|
7 |
-
- accuracy
|
8 |
-
pipeline_tag: text-generation
|
9 |
-
tags:
|
10 |
-
- openthai
|
11 |
-
- pytorch
|
12 |
-
library_name: transformers
|
13 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/config.json
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "/project/lt900048-ai24tn/models/openthaigpt/openthai-llama-21000",
|
3 |
-
"architectures": [
|
4 |
-
"LlamaForCausalLM"
|
5 |
-
],
|
6 |
-
"attention_bias": false,
|
7 |
-
"attention_dropout": 0.0,
|
8 |
-
"bos_token_id": 1,
|
9 |
-
"eos_token_id": 2,
|
10 |
-
"hidden_act": "silu",
|
11 |
-
"hidden_size": 4096,
|
12 |
-
"initializer_range": 0.02,
|
13 |
-
"intermediate_size": 11008,
|
14 |
-
"max_position_embeddings": 4096,
|
15 |
-
"model_type": "llama",
|
16 |
-
"num_attention_heads": 32,
|
17 |
-
"num_hidden_layers": 32,
|
18 |
-
"num_key_value_heads": 32,
|
19 |
-
"pad_token_id": 0,
|
20 |
-
"pretraining_tp": 1,
|
21 |
-
"rms_norm_eps": 1e-05,
|
22 |
-
"rope_scaling": null,
|
23 |
-
"rope_theta": 10000.0,
|
24 |
-
"tie_word_embeddings": false,
|
25 |
-
"torch_dtype": "float32",
|
26 |
-
"transformers_version": "4.40.1",
|
27 |
-
"use_cache": true,
|
28 |
-
"vocab_size": 56541
|
29 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/generation_config.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_from_model_config": true,
|
3 |
-
"bos_token_id": 1,
|
4 |
-
"eos_token_id": 2,
|
5 |
-
"pad_token_id": 0,
|
6 |
-
"transformers_version": "4.40.1"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/latest
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
global_step75
|
|
|
|
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cac292d021463776d3c6cf001b131c8cfee5c2e4e9b07b3f30143272bf860860
|
3 |
-
size 13878944720
|
|
|
|
|
|
|
|
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/special_tokens_map.json
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"bos_token": {
|
3 |
-
"content": "<s>",
|
4 |
-
"lstrip": false,
|
5 |
-
"normalized": false,
|
6 |
-
"rstrip": false,
|
7 |
-
"single_word": false
|
8 |
-
},
|
9 |
-
"eos_token": {
|
10 |
-
"content": "</s>",
|
11 |
-
"lstrip": false,
|
12 |
-
"normalized": false,
|
13 |
-
"rstrip": false,
|
14 |
-
"single_word": false
|
15 |
-
},
|
16 |
-
"pad_token": "</s>",
|
17 |
-
"unk_token": {
|
18 |
-
"content": "<unk>",
|
19 |
-
"lstrip": false,
|
20 |
-
"normalized": false,
|
21 |
-
"rstrip": false,
|
22 |
-
"single_word": false
|
23 |
-
}
|
24 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/tokenizer.model
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:77901fd826845fd170d28f7c5eb4edf599ee7baa58e9e1c5bd4f527ca26f4893
|
3 |
-
size 1167962
|
|
|
|
|
|
|
|
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/tokenizer_config.json
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"add_bos_token": true,
|
3 |
-
"add_eos_token": false,
|
4 |
-
"add_prefix_space": true,
|
5 |
-
"added_tokens_decoder": {
|
6 |
-
"0": {
|
7 |
-
"content": "<unk>",
|
8 |
-
"lstrip": false,
|
9 |
-
"normalized": false,
|
10 |
-
"rstrip": false,
|
11 |
-
"single_word": false,
|
12 |
-
"special": true
|
13 |
-
},
|
14 |
-
"1": {
|
15 |
-
"content": "<s>",
|
16 |
-
"lstrip": false,
|
17 |
-
"normalized": false,
|
18 |
-
"rstrip": false,
|
19 |
-
"single_word": false,
|
20 |
-
"special": true
|
21 |
-
},
|
22 |
-
"2": {
|
23 |
-
"content": "</s>",
|
24 |
-
"lstrip": false,
|
25 |
-
"normalized": false,
|
26 |
-
"rstrip": false,
|
27 |
-
"single_word": false,
|
28 |
-
"special": true
|
29 |
-
}
|
30 |
-
},
|
31 |
-
"bos_token": "<s>",
|
32 |
-
"clean_up_tokenization_spaces": false,
|
33 |
-
"eos_token": "</s>",
|
34 |
-
"legacy": true,
|
35 |
-
"model_max_length": 2048,
|
36 |
-
"pad_token": "</s>",
|
37 |
-
"padding_side": "right",
|
38 |
-
"sp_model_kwargs": {},
|
39 |
-
"spaces_between_special_tokens": false,
|
40 |
-
"tokenizer_class": "LlamaTokenizer",
|
41 |
-
"unk_token": "<unk>",
|
42 |
-
"use_default_system_prompt": true,
|
43 |
-
"use_fast": false
|
44 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Machima-openthai-llama-pretrained-7b-table-trained_safetensors/trainer_state.json
DELETED
@@ -1,555 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": null,
|
3 |
-
"best_model_checkpoint": null,
|
4 |
-
"epoch": 3.0,
|
5 |
-
"eval_steps": 500,
|
6 |
-
"global_step": 75,
|
7 |
-
"is_hyper_param_search": false,
|
8 |
-
"is_local_process_zero": true,
|
9 |
-
"is_world_process_zero": true,
|
10 |
-
"log_history": [
|
11 |
-
{
|
12 |
-
"epoch": 0.04,
|
13 |
-
"grad_norm": 20.00289492370743,
|
14 |
-
"learning_rate": 0.0,
|
15 |
-
"loss": 1.5756,
|
16 |
-
"step": 1
|
17 |
-
},
|
18 |
-
{
|
19 |
-
"epoch": 0.08,
|
20 |
-
"grad_norm": 169.81482789708753,
|
21 |
-
"learning_rate": 5e-05,
|
22 |
-
"loss": 14.3496,
|
23 |
-
"step": 2
|
24 |
-
},
|
25 |
-
{
|
26 |
-
"epoch": 0.12,
|
27 |
-
"grad_norm": 170.94221266882175,
|
28 |
-
"learning_rate": 7.924812503605781e-05,
|
29 |
-
"loss": 14.3495,
|
30 |
-
"step": 3
|
31 |
-
},
|
32 |
-
{
|
33 |
-
"epoch": 0.16,
|
34 |
-
"grad_norm": 96.07266456886373,
|
35 |
-
"learning_rate": 0.0001,
|
36 |
-
"loss": 5.728,
|
37 |
-
"step": 4
|
38 |
-
},
|
39 |
-
{
|
40 |
-
"epoch": 0.2,
|
41 |
-
"grad_norm": 74.89495923839695,
|
42 |
-
"learning_rate": 0.0001,
|
43 |
-
"loss": 3.198,
|
44 |
-
"step": 5
|
45 |
-
},
|
46 |
-
{
|
47 |
-
"epoch": 0.24,
|
48 |
-
"grad_norm": 16.06625851910231,
|
49 |
-
"learning_rate": 9.859154929577466e-05,
|
50 |
-
"loss": 1.711,
|
51 |
-
"step": 6
|
52 |
-
},
|
53 |
-
{
|
54 |
-
"epoch": 0.28,
|
55 |
-
"grad_norm": 11.432322037094815,
|
56 |
-
"learning_rate": 9.718309859154931e-05,
|
57 |
-
"loss": 1.1097,
|
58 |
-
"step": 7
|
59 |
-
},
|
60 |
-
{
|
61 |
-
"epoch": 0.32,
|
62 |
-
"grad_norm": 10.90988949596415,
|
63 |
-
"learning_rate": 9.577464788732394e-05,
|
64 |
-
"loss": 1.1647,
|
65 |
-
"step": 8
|
66 |
-
},
|
67 |
-
{
|
68 |
-
"epoch": 0.36,
|
69 |
-
"grad_norm": 5.166602608719267,
|
70 |
-
"learning_rate": 9.43661971830986e-05,
|
71 |
-
"loss": 0.6874,
|
72 |
-
"step": 9
|
73 |
-
},
|
74 |
-
{
|
75 |
-
"epoch": 0.4,
|
76 |
-
"grad_norm": 5.063308573446352,
|
77 |
-
"learning_rate": 9.295774647887325e-05,
|
78 |
-
"loss": 0.6268,
|
79 |
-
"step": 10
|
80 |
-
},
|
81 |
-
{
|
82 |
-
"epoch": 0.44,
|
83 |
-
"grad_norm": 7.227736963113414,
|
84 |
-
"learning_rate": 9.15492957746479e-05,
|
85 |
-
"loss": 0.5151,
|
86 |
-
"step": 11
|
87 |
-
},
|
88 |
-
{
|
89 |
-
"epoch": 0.48,
|
90 |
-
"grad_norm": 4.259327811156309,
|
91 |
-
"learning_rate": 9.014084507042254e-05,
|
92 |
-
"loss": 0.4389,
|
93 |
-
"step": 12
|
94 |
-
},
|
95 |
-
{
|
96 |
-
"epoch": 0.52,
|
97 |
-
"grad_norm": 6.156983867098677,
|
98 |
-
"learning_rate": 8.873239436619719e-05,
|
99 |
-
"loss": 0.5211,
|
100 |
-
"step": 13
|
101 |
-
},
|
102 |
-
{
|
103 |
-
"epoch": 0.56,
|
104 |
-
"grad_norm": 5.241850109217824,
|
105 |
-
"learning_rate": 8.732394366197182e-05,
|
106 |
-
"loss": 0.3401,
|
107 |
-
"step": 14
|
108 |
-
},
|
109 |
-
{
|
110 |
-
"epoch": 0.6,
|
111 |
-
"grad_norm": 45.75950192245342,
|
112 |
-
"learning_rate": 8.591549295774647e-05,
|
113 |
-
"loss": 0.6114,
|
114 |
-
"step": 15
|
115 |
-
},
|
116 |
-
{
|
117 |
-
"epoch": 0.64,
|
118 |
-
"grad_norm": 12.747985157681715,
|
119 |
-
"learning_rate": 8.450704225352113e-05,
|
120 |
-
"loss": 0.4109,
|
121 |
-
"step": 16
|
122 |
-
},
|
123 |
-
{
|
124 |
-
"epoch": 0.68,
|
125 |
-
"grad_norm": 6.204387028637272,
|
126 |
-
"learning_rate": 8.309859154929578e-05,
|
127 |
-
"loss": 0.3238,
|
128 |
-
"step": 17
|
129 |
-
},
|
130 |
-
{
|
131 |
-
"epoch": 0.72,
|
132 |
-
"grad_norm": 1.784294966675183,
|
133 |
-
"learning_rate": 8.169014084507043e-05,
|
134 |
-
"loss": 0.2746,
|
135 |
-
"step": 18
|
136 |
-
},
|
137 |
-
{
|
138 |
-
"epoch": 0.76,
|
139 |
-
"grad_norm": 1.0640451461171732,
|
140 |
-
"learning_rate": 8.028169014084508e-05,
|
141 |
-
"loss": 0.2216,
|
142 |
-
"step": 19
|
143 |
-
},
|
144 |
-
{
|
145 |
-
"epoch": 0.8,
|
146 |
-
"grad_norm": 2.247533777438539,
|
147 |
-
"learning_rate": 7.887323943661972e-05,
|
148 |
-
"loss": 0.2169,
|
149 |
-
"step": 20
|
150 |
-
},
|
151 |
-
{
|
152 |
-
"epoch": 0.84,
|
153 |
-
"grad_norm": 0.5843446520161867,
|
154 |
-
"learning_rate": 7.746478873239437e-05,
|
155 |
-
"loss": 0.2063,
|
156 |
-
"step": 21
|
157 |
-
},
|
158 |
-
{
|
159 |
-
"epoch": 0.88,
|
160 |
-
"grad_norm": 0.6140022871361251,
|
161 |
-
"learning_rate": 7.605633802816902e-05,
|
162 |
-
"loss": 0.1924,
|
163 |
-
"step": 22
|
164 |
-
},
|
165 |
-
{
|
166 |
-
"epoch": 0.92,
|
167 |
-
"grad_norm": 0.6328264593401415,
|
168 |
-
"learning_rate": 7.464788732394367e-05,
|
169 |
-
"loss": 0.1687,
|
170 |
-
"step": 23
|
171 |
-
},
|
172 |
-
{
|
173 |
-
"epoch": 0.96,
|
174 |
-
"grad_norm": 0.47188590510134204,
|
175 |
-
"learning_rate": 7.323943661971832e-05,
|
176 |
-
"loss": 0.1502,
|
177 |
-
"step": 24
|
178 |
-
},
|
179 |
-
{
|
180 |
-
"epoch": 1.0,
|
181 |
-
"grad_norm": 0.4569187747764233,
|
182 |
-
"learning_rate": 7.183098591549297e-05,
|
183 |
-
"loss": 0.1322,
|
184 |
-
"step": 25
|
185 |
-
},
|
186 |
-
{
|
187 |
-
"epoch": 1.04,
|
188 |
-
"grad_norm": 0.5022295511205257,
|
189 |
-
"learning_rate": 7.042253521126761e-05,
|
190 |
-
"loss": 0.1283,
|
191 |
-
"step": 26
|
192 |
-
},
|
193 |
-
{
|
194 |
-
"epoch": 1.08,
|
195 |
-
"grad_norm": 0.32747245962381083,
|
196 |
-
"learning_rate": 6.901408450704226e-05,
|
197 |
-
"loss": 0.105,
|
198 |
-
"step": 27
|
199 |
-
},
|
200 |
-
{
|
201 |
-
"epoch": 1.12,
|
202 |
-
"grad_norm": 0.4071591561018996,
|
203 |
-
"learning_rate": 6.76056338028169e-05,
|
204 |
-
"loss": 0.1127,
|
205 |
-
"step": 28
|
206 |
-
},
|
207 |
-
{
|
208 |
-
"epoch": 1.16,
|
209 |
-
"grad_norm": 0.4886479527811691,
|
210 |
-
"learning_rate": 6.619718309859155e-05,
|
211 |
-
"loss": 0.1097,
|
212 |
-
"step": 29
|
213 |
-
},
|
214 |
-
{
|
215 |
-
"epoch": 1.2,
|
216 |
-
"grad_norm": 0.34862267892547183,
|
217 |
-
"learning_rate": 6.47887323943662e-05,
|
218 |
-
"loss": 0.1007,
|
219 |
-
"step": 30
|
220 |
-
},
|
221 |
-
{
|
222 |
-
"epoch": 1.24,
|
223 |
-
"grad_norm": 0.33123650236209157,
|
224 |
-
"learning_rate": 6.338028169014085e-05,
|
225 |
-
"loss": 0.0945,
|
226 |
-
"step": 31
|
227 |
-
},
|
228 |
-
{
|
229 |
-
"epoch": 1.28,
|
230 |
-
"grad_norm": 0.3246463353672584,
|
231 |
-
"learning_rate": 6.197183098591549e-05,
|
232 |
-
"loss": 0.0957,
|
233 |
-
"step": 32
|
234 |
-
},
|
235 |
-
{
|
236 |
-
"epoch": 1.32,
|
237 |
-
"grad_norm": 0.3503498413159293,
|
238 |
-
"learning_rate": 6.056338028169014e-05,
|
239 |
-
"loss": 0.1007,
|
240 |
-
"step": 33
|
241 |
-
},
|
242 |
-
{
|
243 |
-
"epoch": 1.3599999999999999,
|
244 |
-
"grad_norm": 0.2994313557882548,
|
245 |
-
"learning_rate": 5.915492957746479e-05,
|
246 |
-
"loss": 0.0961,
|
247 |
-
"step": 34
|
248 |
-
},
|
249 |
-
{
|
250 |
-
"epoch": 1.4,
|
251 |
-
"grad_norm": 0.3098559906263102,
|
252 |
-
"learning_rate": 5.774647887323944e-05,
|
253 |
-
"loss": 0.0891,
|
254 |
-
"step": 35
|
255 |
-
},
|
256 |
-
{
|
257 |
-
"epoch": 1.44,
|
258 |
-
"grad_norm": 0.3320370344139516,
|
259 |
-
"learning_rate": 5.633802816901409e-05,
|
260 |
-
"loss": 0.093,
|
261 |
-
"step": 36
|
262 |
-
},
|
263 |
-
{
|
264 |
-
"epoch": 1.48,
|
265 |
-
"grad_norm": 0.2975761075734135,
|
266 |
-
"learning_rate": 5.492957746478874e-05,
|
267 |
-
"loss": 0.0824,
|
268 |
-
"step": 37
|
269 |
-
},
|
270 |
-
{
|
271 |
-
"epoch": 1.52,
|
272 |
-
"grad_norm": 0.2609696051747955,
|
273 |
-
"learning_rate": 5.352112676056338e-05,
|
274 |
-
"loss": 0.0849,
|
275 |
-
"step": 38
|
276 |
-
},
|
277 |
-
{
|
278 |
-
"epoch": 1.56,
|
279 |
-
"grad_norm": 0.2746218271104525,
|
280 |
-
"learning_rate": 5.2112676056338026e-05,
|
281 |
-
"loss": 0.0812,
|
282 |
-
"step": 39
|
283 |
-
},
|
284 |
-
{
|
285 |
-
"epoch": 1.6,
|
286 |
-
"grad_norm": 0.27280756684282476,
|
287 |
-
"learning_rate": 5.070422535211268e-05,
|
288 |
-
"loss": 0.0857,
|
289 |
-
"step": 40
|
290 |
-
},
|
291 |
-
{
|
292 |
-
"epoch": 1.6400000000000001,
|
293 |
-
"grad_norm": 0.3333732319784279,
|
294 |
-
"learning_rate": 4.929577464788733e-05,
|
295 |
-
"loss": 0.083,
|
296 |
-
"step": 41
|
297 |
-
},
|
298 |
-
{
|
299 |
-
"epoch": 1.6800000000000002,
|
300 |
-
"grad_norm": 0.28187480716143415,
|
301 |
-
"learning_rate": 4.788732394366197e-05,
|
302 |
-
"loss": 0.0805,
|
303 |
-
"step": 42
|
304 |
-
},
|
305 |
-
{
|
306 |
-
"epoch": 1.72,
|
307 |
-
"grad_norm": 0.25874624247743283,
|
308 |
-
"learning_rate": 4.647887323943662e-05,
|
309 |
-
"loss": 0.0806,
|
310 |
-
"step": 43
|
311 |
-
},
|
312 |
-
{
|
313 |
-
"epoch": 1.76,
|
314 |
-
"grad_norm": 0.28417848530718226,
|
315 |
-
"learning_rate": 4.507042253521127e-05,
|
316 |
-
"loss": 0.0776,
|
317 |
-
"step": 44
|
318 |
-
},
|
319 |
-
{
|
320 |
-
"epoch": 1.8,
|
321 |
-
"grad_norm": 0.24698649624452082,
|
322 |
-
"learning_rate": 4.366197183098591e-05,
|
323 |
-
"loss": 0.0765,
|
324 |
-
"step": 45
|
325 |
-
},
|
326 |
-
{
|
327 |
-
"epoch": 1.8399999999999999,
|
328 |
-
"grad_norm": 0.23537664520973256,
|
329 |
-
"learning_rate": 4.225352112676056e-05,
|
330 |
-
"loss": 0.0758,
|
331 |
-
"step": 46
|
332 |
-
},
|
333 |
-
{
|
334 |
-
"epoch": 1.88,
|
335 |
-
"grad_norm": 0.2534413438607467,
|
336 |
-
"learning_rate": 4.0845070422535214e-05,
|
337 |
-
"loss": 0.0804,
|
338 |
-
"step": 47
|
339 |
-
},
|
340 |
-
{
|
341 |
-
"epoch": 1.92,
|
342 |
-
"grad_norm": 0.20702488497520458,
|
343 |
-
"learning_rate": 3.943661971830986e-05,
|
344 |
-
"loss": 0.0715,
|
345 |
-
"step": 48
|
346 |
-
},
|
347 |
-
{
|
348 |
-
"epoch": 1.96,
|
349 |
-
"grad_norm": 0.2613262372736133,
|
350 |
-
"learning_rate": 3.802816901408451e-05,
|
351 |
-
"loss": 0.084,
|
352 |
-
"step": 49
|
353 |
-
},
|
354 |
-
{
|
355 |
-
"epoch": 2.0,
|
356 |
-
"grad_norm": 0.22492435603929029,
|
357 |
-
"learning_rate": 3.661971830985916e-05,
|
358 |
-
"loss": 0.0556,
|
359 |
-
"step": 50
|
360 |
-
},
|
361 |
-
{
|
362 |
-
"epoch": 2.04,
|
363 |
-
"grad_norm": 0.2611962185259755,
|
364 |
-
"learning_rate": 3.5211267605633805e-05,
|
365 |
-
"loss": 0.0481,
|
366 |
-
"step": 51
|
367 |
-
},
|
368 |
-
{
|
369 |
-
"epoch": 2.08,
|
370 |
-
"grad_norm": 0.15962947759230994,
|
371 |
-
"learning_rate": 3.380281690140845e-05,
|
372 |
-
"loss": 0.0449,
|
373 |
-
"step": 52
|
374 |
-
},
|
375 |
-
{
|
376 |
-
"epoch": 2.12,
|
377 |
-
"grad_norm": 0.1694677846392973,
|
378 |
-
"learning_rate": 3.23943661971831e-05,
|
379 |
-
"loss": 0.0482,
|
380 |
-
"step": 53
|
381 |
-
},
|
382 |
-
{
|
383 |
-
"epoch": 2.16,
|
384 |
-
"grad_norm": 0.1438746814861677,
|
385 |
-
"learning_rate": 3.0985915492957744e-05,
|
386 |
-
"loss": 0.0425,
|
387 |
-
"step": 54
|
388 |
-
},
|
389 |
-
{
|
390 |
-
"epoch": 2.2,
|
391 |
-
"grad_norm": 0.17430208968882352,
|
392 |
-
"learning_rate": 2.9577464788732395e-05,
|
393 |
-
"loss": 0.043,
|
394 |
-
"step": 55
|
395 |
-
},
|
396 |
-
{
|
397 |
-
"epoch": 2.24,
|
398 |
-
"grad_norm": 0.17207620385513733,
|
399 |
-
"learning_rate": 2.8169014084507046e-05,
|
400 |
-
"loss": 0.0449,
|
401 |
-
"step": 56
|
402 |
-
},
|
403 |
-
{
|
404 |
-
"epoch": 2.2800000000000002,
|
405 |
-
"grad_norm": 0.18001842523178951,
|
406 |
-
"learning_rate": 2.676056338028169e-05,
|
407 |
-
"loss": 0.0407,
|
408 |
-
"step": 57
|
409 |
-
},
|
410 |
-
{
|
411 |
-
"epoch": 2.32,
|
412 |
-
"grad_norm": 0.20877963876068653,
|
413 |
-
"learning_rate": 2.535211267605634e-05,
|
414 |
-
"loss": 0.0418,
|
415 |
-
"step": 58
|
416 |
-
},
|
417 |
-
{
|
418 |
-
"epoch": 2.36,
|
419 |
-
"grad_norm": 0.2086206476860082,
|
420 |
-
"learning_rate": 2.3943661971830986e-05,
|
421 |
-
"loss": 0.0432,
|
422 |
-
"step": 59
|
423 |
-
},
|
424 |
-
{
|
425 |
-
"epoch": 2.4,
|
426 |
-
"grad_norm": 0.18489125316064906,
|
427 |
-
"learning_rate": 2.2535211267605634e-05,
|
428 |
-
"loss": 0.0443,
|
429 |
-
"step": 60
|
430 |
-
},
|
431 |
-
{
|
432 |
-
"epoch": 2.44,
|
433 |
-
"grad_norm": 0.18836568321121092,
|
434 |
-
"learning_rate": 2.112676056338028e-05,
|
435 |
-
"loss": 0.0416,
|
436 |
-
"step": 61
|
437 |
-
},
|
438 |
-
{
|
439 |
-
"epoch": 2.48,
|
440 |
-
"grad_norm": 0.18671273407693323,
|
441 |
-
"learning_rate": 1.971830985915493e-05,
|
442 |
-
"loss": 0.0392,
|
443 |
-
"step": 62
|
444 |
-
},
|
445 |
-
{
|
446 |
-
"epoch": 2.52,
|
447 |
-
"grad_norm": 0.183141175658178,
|
448 |
-
"learning_rate": 1.830985915492958e-05,
|
449 |
-
"loss": 0.0406,
|
450 |
-
"step": 63
|
451 |
-
},
|
452 |
-
{
|
453 |
-
"epoch": 2.56,
|
454 |
-
"grad_norm": 0.19023565118928507,
|
455 |
-
"learning_rate": 1.6901408450704224e-05,
|
456 |
-
"loss": 0.0392,
|
457 |
-
"step": 64
|
458 |
-
},
|
459 |
-
{
|
460 |
-
"epoch": 2.6,
|
461 |
-
"grad_norm": 0.1734836339026565,
|
462 |
-
"learning_rate": 1.5492957746478872e-05,
|
463 |
-
"loss": 0.0408,
|
464 |
-
"step": 65
|
465 |
-
},
|
466 |
-
{
|
467 |
-
"epoch": 2.64,
|
468 |
-
"grad_norm": 0.2124529691628785,
|
469 |
-
"learning_rate": 1.4084507042253523e-05,
|
470 |
-
"loss": 0.0402,
|
471 |
-
"step": 66
|
472 |
-
},
|
473 |
-
{
|
474 |
-
"epoch": 2.68,
|
475 |
-
"grad_norm": 0.16929391483607104,
|
476 |
-
"learning_rate": 1.267605633802817e-05,
|
477 |
-
"loss": 0.0422,
|
478 |
-
"step": 67
|
479 |
-
},
|
480 |
-
{
|
481 |
-
"epoch": 2.7199999999999998,
|
482 |
-
"grad_norm": 0.1865969813928253,
|
483 |
-
"learning_rate": 1.1267605633802817e-05,
|
484 |
-
"loss": 0.0423,
|
485 |
-
"step": 68
|
486 |
-
},
|
487 |
-
{
|
488 |
-
"epoch": 2.76,
|
489 |
-
"grad_norm": 0.19199511508921327,
|
490 |
-
"learning_rate": 9.859154929577465e-06,
|
491 |
-
"loss": 0.0428,
|
492 |
-
"step": 69
|
493 |
-
},
|
494 |
-
{
|
495 |
-
"epoch": 2.8,
|
496 |
-
"grad_norm": 0.15471843235506497,
|
497 |
-
"learning_rate": 8.450704225352112e-06,
|
498 |
-
"loss": 0.0383,
|
499 |
-
"step": 70
|
500 |
-
},
|
501 |
-
{
|
502 |
-
"epoch": 2.84,
|
503 |
-
"grad_norm": 0.17211726924185472,
|
504 |
-
"learning_rate": 7.042253521126762e-06,
|
505 |
-
"loss": 0.0422,
|
506 |
-
"step": 71
|
507 |
-
},
|
508 |
-
{
|
509 |
-
"epoch": 2.88,
|
510 |
-
"grad_norm": 0.16597891624795819,
|
511 |
-
"learning_rate": 5.6338028169014084e-06,
|
512 |
-
"loss": 0.0358,
|
513 |
-
"step": 72
|
514 |
-
},
|
515 |
-
{
|
516 |
-
"epoch": 2.92,
|
517 |
-
"grad_norm": 0.16696499746864643,
|
518 |
-
"learning_rate": 4.225352112676056e-06,
|
519 |
-
"loss": 0.0384,
|
520 |
-
"step": 73
|
521 |
-
},
|
522 |
-
{
|
523 |
-
"epoch": 2.96,
|
524 |
-
"grad_norm": 0.16841918706948866,
|
525 |
-
"learning_rate": 2.8169014084507042e-06,
|
526 |
-
"loss": 0.0399,
|
527 |
-
"step": 74
|
528 |
-
},
|
529 |
-
{
|
530 |
-
"epoch": 3.0,
|
531 |
-
"grad_norm": 0.12380367991746002,
|
532 |
-
"learning_rate": 1.4084507042253521e-06,
|
533 |
-
"loss": 0.0275,
|
534 |
-
"step": 75
|
535 |
-
},
|
536 |
-
{
|
537 |
-
"epoch": 3.0,
|
538 |
-
"step": 75,
|
539 |
-
"total_flos": 175054227243008.0,
|
540 |
-
"train_loss": 0.6997585766762495,
|
541 |
-
"train_runtime": 937.3587,
|
542 |
-
"train_samples_per_second": 103.388,
|
543 |
-
"train_steps_per_second": 0.08
|
544 |
-
}
|
545 |
-
],
|
546 |
-
"logging_steps": 1.0,
|
547 |
-
"max_steps": 75,
|
548 |
-
"num_input_tokens_seen": 0,
|
549 |
-
"num_train_epochs": 3,
|
550 |
-
"save_steps": 500,
|
551 |
-
"total_flos": 175054227243008.0,
|
552 |
-
"train_batch_size": 12,
|
553 |
-
"trial_name": null,
|
554 |
-
"trial_params": null
|
555 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
training_args.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d7fc176810fd9b3cd41a111aa8142543838dc193aad79a2d257a1ff5b70e73dc
|
3 |
-
size 7032
|
|
|
|
|
|
|
|
zero_to_fp32.py
DELETED
@@ -1,604 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
# Copyright (c) Microsoft Corporation.
|
4 |
-
# SPDX-License-Identifier: Apache-2.0
|
5 |
-
|
6 |
-
# DeepSpeed Team
|
7 |
-
|
8 |
-
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
-
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
-
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
-
# application.
|
12 |
-
#
|
13 |
-
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
-
|
15 |
-
import argparse
|
16 |
-
import torch
|
17 |
-
import glob
|
18 |
-
import math
|
19 |
-
import os
|
20 |
-
import re
|
21 |
-
from collections import OrderedDict
|
22 |
-
from dataclasses import dataclass
|
23 |
-
|
24 |
-
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
-
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
-
from deepspeed.utils import logger
|
27 |
-
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
-
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
-
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
-
|
31 |
-
|
32 |
-
@dataclass
|
33 |
-
class zero_model_state:
|
34 |
-
buffers: dict()
|
35 |
-
param_shapes: dict()
|
36 |
-
shared_params: list
|
37 |
-
ds_version: int
|
38 |
-
frozen_param_shapes: dict()
|
39 |
-
frozen_param_fragments: dict()
|
40 |
-
|
41 |
-
|
42 |
-
debug = 0
|
43 |
-
|
44 |
-
# load to cpu
|
45 |
-
device = torch.device('cpu')
|
46 |
-
|
47 |
-
|
48 |
-
def atoi(text):
|
49 |
-
return int(text) if text.isdigit() else text
|
50 |
-
|
51 |
-
|
52 |
-
def natural_keys(text):
|
53 |
-
'''
|
54 |
-
alist.sort(key=natural_keys) sorts in human order
|
55 |
-
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
-
(See Toothy's implementation in the comments)
|
57 |
-
'''
|
58 |
-
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
-
|
60 |
-
|
61 |
-
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
-
if not os.path.isdir(checkpoint_dir):
|
63 |
-
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
-
|
65 |
-
# there should be only one file
|
66 |
-
if zero_stage <= 2:
|
67 |
-
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
-
elif zero_stage == 3:
|
69 |
-
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
-
|
71 |
-
if not os.path.exists(file):
|
72 |
-
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
-
|
74 |
-
return file
|
75 |
-
|
76 |
-
|
77 |
-
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
-
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
-
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
-
|
81 |
-
if len(ckpt_files) == 0:
|
82 |
-
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
-
|
84 |
-
return ckpt_files
|
85 |
-
|
86 |
-
|
87 |
-
def get_optim_files(checkpoint_dir):
|
88 |
-
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
-
|
90 |
-
|
91 |
-
def get_model_state_files(checkpoint_dir):
|
92 |
-
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
-
|
94 |
-
|
95 |
-
def parse_model_states(files):
|
96 |
-
zero_model_states = []
|
97 |
-
for file in files:
|
98 |
-
state_dict = torch.load(file, map_location=device)
|
99 |
-
|
100 |
-
if BUFFER_NAMES not in state_dict:
|
101 |
-
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
-
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
-
if debug:
|
104 |
-
print("Found buffers:", buffer_names)
|
105 |
-
|
106 |
-
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
-
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
-
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
-
|
110 |
-
# collect parameters that are included in param_shapes
|
111 |
-
param_names = []
|
112 |
-
for s in param_shapes:
|
113 |
-
for name in s.keys():
|
114 |
-
param_names.append(name)
|
115 |
-
|
116 |
-
# update with frozen parameters
|
117 |
-
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
-
if frozen_param_shapes is not None:
|
119 |
-
if debug:
|
120 |
-
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
-
param_names += list(frozen_param_shapes.keys())
|
122 |
-
|
123 |
-
# handle shared params
|
124 |
-
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
-
|
126 |
-
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
-
|
128 |
-
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
-
|
130 |
-
z_model_state = zero_model_state(buffers=buffers,
|
131 |
-
param_shapes=param_shapes,
|
132 |
-
shared_params=shared_params,
|
133 |
-
ds_version=ds_version,
|
134 |
-
frozen_param_shapes=frozen_param_shapes,
|
135 |
-
frozen_param_fragments=frozen_param_fragments)
|
136 |
-
zero_model_states.append(z_model_state)
|
137 |
-
|
138 |
-
return zero_model_states
|
139 |
-
|
140 |
-
|
141 |
-
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
-
|
143 |
-
total_files = len(files)
|
144 |
-
state_dicts = []
|
145 |
-
for f in files:
|
146 |
-
state_dict = torch.load(f, map_location=device)
|
147 |
-
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
-
# and also handle the case where it was already removed by another helper script
|
149 |
-
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
-
state_dicts.append(state_dict)
|
151 |
-
|
152 |
-
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
-
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
-
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
-
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
-
|
157 |
-
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
-
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
-
# use the max of the partition_count to get the dp world_size.
|
160 |
-
|
161 |
-
if type(world_size) is list:
|
162 |
-
world_size = max(world_size)
|
163 |
-
|
164 |
-
if world_size != total_files:
|
165 |
-
raise ValueError(
|
166 |
-
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
-
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
-
)
|
169 |
-
|
170 |
-
# the groups are named differently in each stage
|
171 |
-
if zero_stage <= 2:
|
172 |
-
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
-
elif zero_stage == 3:
|
174 |
-
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
-
else:
|
176 |
-
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
-
|
178 |
-
if zero_stage <= 2:
|
179 |
-
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
-
elif zero_stage == 3:
|
181 |
-
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
-
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
-
#
|
184 |
-
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
-
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
-
|
187 |
-
fp32_flat_groups = [
|
188 |
-
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
-
]
|
190 |
-
|
191 |
-
return zero_stage, world_size, fp32_flat_groups
|
192 |
-
|
193 |
-
|
194 |
-
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
195 |
-
"""
|
196 |
-
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
-
|
198 |
-
Args:
|
199 |
-
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
-
|
201 |
-
"""
|
202 |
-
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
-
|
204 |
-
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
-
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
-
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
-
|
208 |
-
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
-
|
210 |
-
zero_model_states = parse_model_states(model_files)
|
211 |
-
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
-
|
213 |
-
if zero_stage <= 2:
|
214 |
-
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
215 |
-
exclude_frozen_parameters)
|
216 |
-
elif zero_stage == 3:
|
217 |
-
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
218 |
-
exclude_frozen_parameters)
|
219 |
-
|
220 |
-
|
221 |
-
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
222 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
223 |
-
return
|
224 |
-
|
225 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
226 |
-
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
227 |
-
|
228 |
-
if debug:
|
229 |
-
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
230 |
-
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
231 |
-
|
232 |
-
wanted_params = len(frozen_param_shapes)
|
233 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
-
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
235 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
236 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
237 |
-
|
238 |
-
total_params = 0
|
239 |
-
total_numel = 0
|
240 |
-
for name, shape in frozen_param_shapes.items():
|
241 |
-
total_params += 1
|
242 |
-
unpartitioned_numel = shape.numel()
|
243 |
-
total_numel += unpartitioned_numel
|
244 |
-
|
245 |
-
state_dict[name] = frozen_param_fragments[name]
|
246 |
-
|
247 |
-
if debug:
|
248 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
249 |
-
|
250 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
251 |
-
|
252 |
-
|
253 |
-
def _has_callable(obj, fn):
|
254 |
-
attr = getattr(obj, fn, None)
|
255 |
-
return callable(attr)
|
256 |
-
|
257 |
-
|
258 |
-
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
259 |
-
param_shapes = zero_model_states[0].param_shapes
|
260 |
-
|
261 |
-
# Reconstruction protocol:
|
262 |
-
#
|
263 |
-
# XXX: document this
|
264 |
-
|
265 |
-
if debug:
|
266 |
-
for i in range(world_size):
|
267 |
-
for j in range(len(fp32_flat_groups[0])):
|
268 |
-
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
269 |
-
|
270 |
-
# XXX: memory usage doubles here (zero2)
|
271 |
-
num_param_groups = len(fp32_flat_groups[0])
|
272 |
-
merged_single_partition_of_fp32_groups = []
|
273 |
-
for i in range(num_param_groups):
|
274 |
-
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
275 |
-
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
276 |
-
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
277 |
-
avail_numel = sum(
|
278 |
-
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
279 |
-
|
280 |
-
if debug:
|
281 |
-
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
282 |
-
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
283 |
-
# not asserting if there is a mismatch due to possible padding
|
284 |
-
print(f"Have {avail_numel} numels to process.")
|
285 |
-
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
286 |
-
|
287 |
-
# params
|
288 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
289 |
-
# out-of-core computing solution
|
290 |
-
total_numel = 0
|
291 |
-
total_params = 0
|
292 |
-
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
293 |
-
offset = 0
|
294 |
-
avail_numel = full_single_fp32_vector.numel()
|
295 |
-
for name, shape in shapes.items():
|
296 |
-
|
297 |
-
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
298 |
-
total_numel += unpartitioned_numel
|
299 |
-
total_params += 1
|
300 |
-
|
301 |
-
if debug:
|
302 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
303 |
-
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
304 |
-
offset += unpartitioned_numel
|
305 |
-
|
306 |
-
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
307 |
-
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
308 |
-
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
309 |
-
# live optimizer object, so we are checking that the numbers are within the right range
|
310 |
-
align_to = 2 * world_size
|
311 |
-
|
312 |
-
def zero2_align(x):
|
313 |
-
return align_to * math.ceil(x / align_to)
|
314 |
-
|
315 |
-
if debug:
|
316 |
-
print(f"original offset={offset}, avail_numel={avail_numel}")
|
317 |
-
|
318 |
-
offset = zero2_align(offset)
|
319 |
-
avail_numel = zero2_align(avail_numel)
|
320 |
-
|
321 |
-
if debug:
|
322 |
-
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
323 |
-
|
324 |
-
# Sanity check
|
325 |
-
if offset != avail_numel:
|
326 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
327 |
-
|
328 |
-
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
329 |
-
|
330 |
-
|
331 |
-
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
332 |
-
exclude_frozen_parameters):
|
333 |
-
state_dict = OrderedDict()
|
334 |
-
|
335 |
-
# buffers
|
336 |
-
buffers = zero_model_states[0].buffers
|
337 |
-
state_dict.update(buffers)
|
338 |
-
if debug:
|
339 |
-
print(f"added {len(buffers)} buffers")
|
340 |
-
|
341 |
-
if not exclude_frozen_parameters:
|
342 |
-
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
343 |
-
|
344 |
-
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
345 |
-
|
346 |
-
# recover shared parameters
|
347 |
-
for pair in zero_model_states[0].shared_params:
|
348 |
-
if pair[1] in state_dict:
|
349 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
350 |
-
|
351 |
-
return state_dict
|
352 |
-
|
353 |
-
|
354 |
-
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
355 |
-
remainder = unpartitioned_numel % world_size
|
356 |
-
padding_numel = (world_size - remainder) if remainder else 0
|
357 |
-
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
358 |
-
return partitioned_numel, padding_numel
|
359 |
-
|
360 |
-
|
361 |
-
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
362 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
363 |
-
return
|
364 |
-
|
365 |
-
if debug:
|
366 |
-
for i in range(world_size):
|
367 |
-
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
368 |
-
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
369 |
-
|
370 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
371 |
-
wanted_params = len(frozen_param_shapes)
|
372 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
373 |
-
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
374 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
375 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
376 |
-
|
377 |
-
total_params = 0
|
378 |
-
total_numel = 0
|
379 |
-
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
380 |
-
total_params += 1
|
381 |
-
unpartitioned_numel = shape.numel()
|
382 |
-
total_numel += unpartitioned_numel
|
383 |
-
|
384 |
-
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
385 |
-
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
386 |
-
|
387 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
388 |
-
|
389 |
-
if debug:
|
390 |
-
print(
|
391 |
-
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
392 |
-
)
|
393 |
-
|
394 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
395 |
-
|
396 |
-
|
397 |
-
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
398 |
-
param_shapes = zero_model_states[0].param_shapes
|
399 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
400 |
-
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
401 |
-
# param, re-consolidating each param, while dealing with padding if any
|
402 |
-
|
403 |
-
# merge list of dicts, preserving order
|
404 |
-
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
405 |
-
|
406 |
-
if debug:
|
407 |
-
for i in range(world_size):
|
408 |
-
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
409 |
-
|
410 |
-
wanted_params = len(param_shapes)
|
411 |
-
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
412 |
-
# not asserting if there is a mismatch due to possible padding
|
413 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
414 |
-
print(f"Trainable params: Have {avail_numel} numels to process.")
|
415 |
-
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
416 |
-
|
417 |
-
# params
|
418 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
419 |
-
# out-of-core computing solution
|
420 |
-
offset = 0
|
421 |
-
total_numel = 0
|
422 |
-
total_params = 0
|
423 |
-
for name, shape in param_shapes.items():
|
424 |
-
|
425 |
-
unpartitioned_numel = shape.numel()
|
426 |
-
total_numel += unpartitioned_numel
|
427 |
-
total_params += 1
|
428 |
-
|
429 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
430 |
-
|
431 |
-
if debug:
|
432 |
-
print(
|
433 |
-
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
434 |
-
)
|
435 |
-
|
436 |
-
# XXX: memory usage doubles here
|
437 |
-
state_dict[name] = torch.cat(
|
438 |
-
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
439 |
-
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
440 |
-
offset += partitioned_numel
|
441 |
-
|
442 |
-
offset *= world_size
|
443 |
-
|
444 |
-
# Sanity check
|
445 |
-
if offset != avail_numel:
|
446 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
447 |
-
|
448 |
-
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
449 |
-
|
450 |
-
|
451 |
-
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
452 |
-
exclude_frozen_parameters):
|
453 |
-
state_dict = OrderedDict()
|
454 |
-
|
455 |
-
# buffers
|
456 |
-
buffers = zero_model_states[0].buffers
|
457 |
-
state_dict.update(buffers)
|
458 |
-
if debug:
|
459 |
-
print(f"added {len(buffers)} buffers")
|
460 |
-
|
461 |
-
if not exclude_frozen_parameters:
|
462 |
-
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
463 |
-
|
464 |
-
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
465 |
-
|
466 |
-
# recover shared parameters
|
467 |
-
for pair in zero_model_states[0].shared_params:
|
468 |
-
if pair[1] in state_dict:
|
469 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
470 |
-
|
471 |
-
return state_dict
|
472 |
-
|
473 |
-
|
474 |
-
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
475 |
-
"""
|
476 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
477 |
-
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
478 |
-
via a model hub.
|
479 |
-
|
480 |
-
Args:
|
481 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder
|
482 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
483 |
-
- ``exclude_frozen_parameters``: exclude frozen parameters
|
484 |
-
|
485 |
-
Returns:
|
486 |
-
- pytorch ``state_dict``
|
487 |
-
|
488 |
-
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
489 |
-
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
490 |
-
the checkpoint.
|
491 |
-
|
492 |
-
A typical usage might be ::
|
493 |
-
|
494 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
495 |
-
# do the training and checkpoint saving
|
496 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
497 |
-
model = model.cpu() # move to cpu
|
498 |
-
model.load_state_dict(state_dict)
|
499 |
-
# submit to model hub or save the model to share with others
|
500 |
-
|
501 |
-
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
502 |
-
application. i.e. you will need to re-initialize the deepspeed engine, since
|
503 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
504 |
-
|
505 |
-
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
506 |
-
|
507 |
-
"""
|
508 |
-
if tag is None:
|
509 |
-
latest_path = os.path.join(checkpoint_dir, 'latest')
|
510 |
-
if os.path.isfile(latest_path):
|
511 |
-
with open(latest_path, 'r') as fd:
|
512 |
-
tag = fd.read().strip()
|
513 |
-
else:
|
514 |
-
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
515 |
-
|
516 |
-
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
517 |
-
|
518 |
-
if not os.path.isdir(ds_checkpoint_dir):
|
519 |
-
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
520 |
-
|
521 |
-
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
522 |
-
|
523 |
-
|
524 |
-
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
|
525 |
-
"""
|
526 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
527 |
-
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
528 |
-
|
529 |
-
Args:
|
530 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
531 |
-
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
532 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
533 |
-
- ``exclude_frozen_parameters``: exclude frozen parameters
|
534 |
-
"""
|
535 |
-
|
536 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
537 |
-
print(f"Saving fp32 state dict to {output_file}")
|
538 |
-
torch.save(state_dict, output_file)
|
539 |
-
|
540 |
-
|
541 |
-
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
542 |
-
"""
|
543 |
-
1. Put the provided model to cpu
|
544 |
-
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
545 |
-
3. Load it into the provided model
|
546 |
-
|
547 |
-
Args:
|
548 |
-
- ``model``: the model object to update
|
549 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
550 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
551 |
-
|
552 |
-
Returns:
|
553 |
-
- ``model`: modified model
|
554 |
-
|
555 |
-
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
556 |
-
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
557 |
-
conveniently placed for you in the checkpoint folder.
|
558 |
-
|
559 |
-
A typical usage might be ::
|
560 |
-
|
561 |
-
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
562 |
-
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
563 |
-
# submit to model hub or save the model to share with others
|
564 |
-
|
565 |
-
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
566 |
-
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
567 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
568 |
-
|
569 |
-
"""
|
570 |
-
logger.info(f"Extracting fp32 weights")
|
571 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
572 |
-
|
573 |
-
logger.info(f"Overwriting model with fp32 weights")
|
574 |
-
model = model.cpu()
|
575 |
-
model.load_state_dict(state_dict, strict=False)
|
576 |
-
|
577 |
-
return model
|
578 |
-
|
579 |
-
|
580 |
-
if __name__ == "__main__":
|
581 |
-
|
582 |
-
parser = argparse.ArgumentParser()
|
583 |
-
parser.add_argument("checkpoint_dir",
|
584 |
-
type=str,
|
585 |
-
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
586 |
-
parser.add_argument(
|
587 |
-
"output_file",
|
588 |
-
type=str,
|
589 |
-
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
590 |
-
parser.add_argument("-t",
|
591 |
-
"--tag",
|
592 |
-
type=str,
|
593 |
-
default=None,
|
594 |
-
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
595 |
-
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
596 |
-
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
597 |
-
args = parser.parse_args()
|
598 |
-
|
599 |
-
debug = args.debug
|
600 |
-
|
601 |
-
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
602 |
-
args.output_file,
|
603 |
-
tag=args.tag,
|
604 |
-
exclude_frozen_parameters=args.exclude_frozen_parameters)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|