--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # MARTINI_enrich_BERTopic_DrPaulMarik This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_DrPaulMarik") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 18 * Number of training documents: 1806
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | fauci - vaccinated - pfizer - injections - symptoms | 21 | -1_fauci_vaccinated_pfizer_injections | | 0 | myocarditis - gardasil - died - incidence - nattokinase | 1059 | 0_myocarditis_gardasil_died_incidence | | 1 | novavax - paxlovid - vaccinated - reinfections - 2023 | 80 | 1_novavax_paxlovid_vaccinated_reinfections | | 2 | deaths - dowd - 2022 - excess - millennials | 80 | 2_deaths_dowd_2022_excess | | 3 | fauci - fbi - wuhan - coronaviruses - bioweapons | 77 | 3_fauci_fbi_wuhan_coronaviruses | | 4 | ketogenic - supplements - dr_gazda - photobiomodulation - longcovid | 61 | 4_ketogenic_supplements_dr_gazda_photobiomodulation | | 5 | thimerosal - vaccinated - autism - diagnosed - cnn | 55 | 5_thimerosal_vaccinated_autism_diagnosed | | 6 | unvaccinated - mandates - lausd - exemptions - mask | 55 | 6_unvaccinated_mandates_lausd_exemptions | | 7 | modrna - plasmid - genetically - contaminated - microbiologist | 53 | 7_modrna_plasmid_genetically_contaminated | | 8 | vaccination - vaers - stillbirths - pfizer - placenta | 42 | 8_vaccination_vaers_stillbirths_pfizer | | 9 | wuhan - lockdowns - shenzhen - millions - riots | 42 | 9_wuhan_lockdowns_shenzhen_millions | | 10 | pandemic - wef - sovereignty - weaponize - cbdcs | 37 | 10_pandemic_wef_sovereignty_weaponize | | 11 | drpaulmarik - janjekielek - epochtvus - earlytreatment - darkhorsepod | 29 | 11_drpaulmarik_janjekielek_epochtvus_earlytreatment | | 12 | pfizer - adverse - falsehoods - rotavirus - mccullough | 24 | 12_pfizer_adverse_falsehoods_rotavirus | | 13 | billgates - bioterrorist - malthusian - bmgf - cepi | 24 | 13_billgates_bioterrorist_malthusian_bmgf | | 14 | fauci - censorship - misinformation - reclaimthenet - facebook | 24 | 14_fauci_censorship_misinformation_reclaimthenet | | 15 | ivermectin - hydroxychloroquine - penicillin - longvax - miracle | 22 | 15_ivermectin_hydroxychloroquine_penicillin_longvax | | 16 | remdesivir - ventilator - methylprednisolone - deadly - sedatives | 21 | 16_remdesivir_ventilator_methylprednisolone_deadly |
## Training hyperparameters * calculate_probabilities: True * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.3 * Scikit-Learn: 1.5.2 * Sentence-transformers: 3.3.1 * Transformers: 4.46.3 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.10.12