File size: 3,103 Bytes
0ff3ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# MARTINI_enrich_BERTopic_IntheboxWithJohnLawrence
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_IntheboxWithJohnLawrence")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 16
* Number of training documents: 1618
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | protest - england - gangs - bnp - migrants | 21 | -1_protest_england_gangs_bnp |
| 0 | coronavirus - pfizer - vaccinated - muscaria - dna | 802 | 0_coronavirus_pfizer_vaccinated_muscaria |
| 1 | antiwhite - britain - supremacy - christianity - persecuted | 120 | 1_antiwhite_britain_supremacy_christianity |
| 2 | ukrainians - zelensky - russia - missiles - prigozhin | 118 | 2_ukrainians_zelensky_russia_missiles |
| 3 | alek - bbc - yerbury - youtube - winners | 61 | 3_alek_bbc_yerbury_youtube |
| 4 | refugees - reformuk - deported - rwanda - welcoming | 59 | 4_refugees_reformuk_deported_rwanda |
| 5 | oldham - assaults - victim - arrested - mugger | 59 | 5_oldham_assaults_victim_arrested |
| 6 | paedophiles - indoctrinated - transgender - instagram - fgm | 59 | 6_paedophiles_indoctrinated_transgender_instagram |
| 7 | illegals - border - arrived - boats - england | 55 | 7_illegals_border_arrived_boats |
| 8 | campaigning - oldham - nationalists - labour - ballot | 54 | 8_campaigning_oldham_nationalists_labour |
| 9 | refugees - housed - landlords - nhpuk - telford | 47 | 9_refugees_housed_landlords_nhpuk |
| 10 | rapist - assaulted - bradford - manchester - convicted | 40 | 10_rapist_assaulted_bradford_manchester |
| 11 | murdered - stabbing - batley - shahid - jail | 39 | 11_murdered_stabbing_batley_shahid |
| 12 | carmarthenshire - llanelli - hotel - stradey - patrioticalternative | 35 | 12_carmarthenshire_llanelli_hotel_stradey |
| 13 | annecy - burqa - stabbed - guerilla - islamabad | 27 | 13_annecy_burqa_stabbed_guerilla |
| 14 | nationalist - france - populists - parliament - ban | 22 | 14_nationalist_france_populists_parliament |
</details>
## Training hyperparameters
* calculate_probabilities: True
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 1.26.4
* HDBSCAN: 0.8.40
* UMAP: 0.5.7
* Pandas: 2.2.3
* Scikit-Learn: 1.5.2
* Sentence-transformers: 3.3.1
* Transformers: 4.46.3
* Numba: 0.60.0
* Plotly: 5.24.1
* Python: 3.10.12
|