--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # MARTINI_enrich_BERTopic_awakenedworlduk This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_awakenedworlduk") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 17 * Number of training documents: 1610
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | trauma - eyes - dr - helps - everyone | 20 | -1_trauma_eyes_dr_helps | | 0 | vaccinated - pfizer - jabs - monkeypox - mandates | 882 | 0_vaccinated_pfizer_jabs_monkeypox | | 1 | canning - pantry - cooker - survival - lentils | 151 | 1_canning_pantry_cooker_survival | | 2 | awakening - consciousness - souls - reality - darkness | 76 | 2_awakening_consciousness_souls_reality | | 3 | safeguarding - abused - offences - chancellor - libraries | 54 | 3_safeguarding_abused_offences_chancellor | | 4 | brainwashed - bonkers - watched - sovereign - cnn | 49 | 4_brainwashed_bonkers_watched_sovereign | | 5 | channel - banned - subscribers - awakened - lol | 49 | 5_channel_banned_subscribers_awakened | | 6 | mugwort - echinacea - tinctures - antioxidants - medicinal | 47 | 6_mugwort_echinacea_tinctures_antioxidants | | 7 | vegetables - cabbages - radishes - lettuces - sowing | 39 | 7_vegetables_cabbages_radishes_lettuces | | 8 | ukraine - shortages - petrol - skyrocketing - electricity | 38 | 8_ukraine_shortages_petrol_skyrocketing | | 9 | methylfolate - statins - niacin - magnesium - mitochondria | 37 | 9_methylfolate_statins_niacin_magnesium | | 10 | toothpaste - shampoo - rinse - peppermint - ingredients | 34 | 10_toothpaste_shampoo_rinse_peppermint | | 11 | nhs - carers - euthanasia - consent - mca | 30 | 11_nhs_carers_euthanasia_consent | | 12 | transglutaminase - additives - carcinogenic - meat - benzalkonium | 29 | 12_transglutaminase_additives_carcinogenic_meat | | 13 | savetheseeds - gmo - allotment - farmers - shropshire | 29 | 13_savetheseeds_gmo_allotment_farmers | | 14 | kwh - gas - charges - october - suppliers | 25 | 14_kwh_gas_charges_october | | 15 | propolis - antimicrobial - ointment - wound - candida | 21 | 15_propolis_antimicrobial_ointment_wound |
## Training hyperparameters * calculate_probabilities: True * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.3 * Scikit-Learn: 1.5.2 * Sentence-transformers: 3.3.1 * Transformers: 4.46.3 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.10.12