--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # MARTINI_enrich_BERTopic_healingivermectin This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_healingivermectin") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 5 * Number of training documents: 260
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | ivermectin - fenbendazole - antitumor - cures - cyanide | 22 | -1_ivermectin_fenbendazole_antitumor_cures | | 0 | ivermectin - healing - bacterial - hcq - honey | 107 | 0_ivermectin_healing_bacterial_hcq | | 1 | parasitic - pinworms - cancers - schizophrenic - nematode | 54 | 1_parasitic_pinworms_cancers_schizophrenic | | 2 | vaccines - pfizer - conspiracy - deaths - mmr | 41 | 2_vaccines_pfizer_conspiracy_deaths | | 3 | download - recordings - telegram - 700mb - hello | 36 | 3_download_recordings_telegram_700mb |
## Training hyperparameters * calculate_probabilities: True * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.3 * Scikit-Learn: 1.5.2 * Sentence-transformers: 3.3.1 * Transformers: 4.46.3 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.10.12