TryingHard commited on
Commit
bbb7264
·
verified ·
1 Parent(s): 0d03284

Create README.md

Browse files

Copied from ovis1.6

Files changed (1) hide show
  1. README.md +158 -0
README.md ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - AIDC-AI/Ovis-dataset
5
+ library_name: transformers
6
+ tags:
7
+ - MLLM
8
+ pipeline_tag: image-text-to-text
9
+ language:
10
+ - en
11
+ ---
12
+
13
+ # Ovis1.6-Gemma2-9B
14
+ <div align="center">
15
+ <img src=https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/3IK823BZ8w-mz_QfeYkDn.png width="30%"/>
16
+ </div>
17
+
18
+ ## Introduction
19
+ [GitHub](https://github.com/AIDC-AI/Ovis) | [Demo](https://huggingface.co/spaces/AIDC-AI/Ovis1.6-Gemma2-9B) | [Paper](https://arxiv.org/abs/2405.20797)
20
+
21
+
22
+ We are excited to announce the open-sourcing of **Ovis-1.6**, our latest multi-modal large language model. Ovis is a novel Multimodal Large Language Model (MLLM) architecture, designed to structurally align visual and textual embeddings.
23
+
24
+ <div align="center">
25
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/658a8a837959448ef5500ce5/TIlymOb86R6_Mez3bpmcB.png" width="100%" />
26
+ </div>
27
+
28
+ ## Model
29
+ Built upon Ovis1.5, **Ovis1.6** further enhances high-resolution image processing, is trained on a larger, more diverse, and higher-quality dataset, and refines the training process with DPO training following instruction-tuning.
30
+
31
+ | Ovis MLLMs | ViT | LLM | Model Weights | Demo |
32
+ |:------------------|:-----------:|:------------------:|:---------------------------------------------------------------:|:----------------------------------------------------------------:|
33
+ | Ovis1.6-Gemma2-9B | Siglip-400M | Gemma2-9B-It | [Huggingface](https://huggingface.co/AIDC-AI/Ovis1.6-Gemma2-9B) | [Space](https://huggingface.co/spaces/AIDC-AI/Ovis1.6-Gemma2-9B) |
34
+
35
+ ## Performance
36
+ With just **10B** parameters, **Ovis1.6-Gemma2-9B** leads the [OpenCompass](https://github.com/open-compass/VLMEvalKit) benchmark among open-source MLLMs within **30B** parameters.
37
+
38
+ <div align="center">
39
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/637aebed7ce76c3b834cea37/ro7nBJmhHQMZYePZmmFJd.png" width="100%" />
40
+ </div>
41
+
42
+ ## Usage
43
+ Below is a code snippet to run Ovis with multimodal inputs. For additional usage instructions, including inference wrapper and Gradio UI, please refer to [Ovis GitHub](https://github.com/AIDC-AI/Ovis?tab=readme-ov-file#inference).
44
+ ```bash
45
+ pip install torch==2.2.0 transformers==4.44.2 numpy==1.24.3 pillow==10.3.0
46
+ ```
47
+ ```python
48
+ import torch
49
+ from PIL import Image
50
+ from transformers import AutoModelForCausalLM
51
+
52
+ # load model
53
+ model = AutoModelForCausalLM.from_pretrained("AIDC-AI/Ovis1.6-Gemma2-9B",
54
+ torch_dtype=torch.bfloat16,
55
+ multimodal_max_length=8192,
56
+ trust_remote_code=True).cuda()
57
+ text_tokenizer = model.get_text_tokenizer()
58
+ visual_tokenizer = model.get_visual_tokenizer()
59
+
60
+ # enter image path and prompt
61
+ image_path = input("Enter image path: ")
62
+ image = Image.open(image_path)
63
+ text = input("Enter prompt: ")
64
+ query = f'<image>\n{text}'
65
+
66
+ # format conversation
67
+ prompt, input_ids, pixel_values = model.preprocess_inputs(query, [image])
68
+ attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
69
+ input_ids = input_ids.unsqueeze(0).to(device=model.device)
70
+ attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
71
+ pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]
72
+
73
+ # generate output
74
+ with torch.inference_mode():
75
+ gen_kwargs = dict(
76
+ max_new_tokens=1024,
77
+ do_sample=False,
78
+ top_p=None,
79
+ top_k=None,
80
+ temperature=None,
81
+ repetition_penalty=None,
82
+ eos_token_id=model.generation_config.eos_token_id,
83
+ pad_token_id=text_tokenizer.pad_token_id,
84
+ use_cache=True
85
+ )
86
+ output_ids = model.generate(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, **gen_kwargs)[0]
87
+ output = text_tokenizer.decode(output_ids, skip_special_tokens=True)
88
+ print(f'Output:\n{output}')
89
+ ```
90
+
91
+ <details>
92
+ <summary>Batch inference</summary>
93
+
94
+ ```python
95
+ batch_inputs = [
96
+ ('example_image1.jpeg', 'Describe the content of this image.'),
97
+ ('example_image2.jpeg', 'What is the equation in the image?')
98
+ ]
99
+
100
+ batch_input_ids = []
101
+ batch_attention_mask = []
102
+ batch_pixel_values = []
103
+
104
+ for image_path, text in batch_inputs:
105
+ image = Image.open(image_path)
106
+ query = f'<image>\n{text}'
107
+ prompt, input_ids, pixel_values = model.preprocess_inputs(query, [image])
108
+ attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
109
+ input_ids = input_ids.unsqueeze(0).to(device=model.device)
110
+ attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
111
+ pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]
112
+ batch_input_ids.append(input_ids.squeeze())
113
+ batch_attention_mask.append(attention_mask.squeeze())
114
+ batch_pixel_values.append(pixel_values)
115
+
116
+ pad_batch_input_ids = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in batch_input_ids],batch_first=True, padding_value=0.0).flip(dims=[1])
117
+ pad_batch_input_ids = pad_batch_input_ids[:,-model.config.multimodal_max_length:]
118
+ pad_batch_attention_mask = torch.nn.utils.rnn.pad_sequence([i.flip(dims=[0]) for i in batch_attention_mask],batch_first=True, padding_value=False).flip(dims=[1])
119
+ pad_batch_attention_mask = pad_batch_attention_mask[:,-model.config.multimodal_max_length:]
120
+ pad_batch_pixel_values = [item for sublist in batch_pixel_values for item in sublist]
121
+
122
+ # generate output
123
+ with torch.inference_mode():
124
+ gen_kwargs = dict(
125
+ max_new_tokens=1024,
126
+ do_sample=False,
127
+ top_p=None,
128
+ top_k=None,
129
+ temperature=None,
130
+ repetition_penalty=None,
131
+ eos_token_id=model.generation_config.eos_token_id,
132
+ pad_token_id=text_tokenizer.pad_token_id,
133
+ use_cache=True
134
+ )
135
+ output_ids = model.generate(pad_batch_input_ids, pixel_values=pad_batch_pixel_values, attention_mask=pad_batch_attention_mask, **gen_kwargs)
136
+
137
+ for i in range(len(batch_input_ids)):
138
+ output = text_tokenizer.decode(output_ids[i], skip_special_tokens=True)
139
+ print(f'Output_{i}:\n{output}')
140
+ ```
141
+ </details>
142
+
143
+ ## Citation
144
+ If you find Ovis useful, please cite the paper
145
+ ```
146
+ @article{lu2024ovis,
147
+ title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model},
148
+ author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye},
149
+ year={2024},
150
+ journal={arXiv:2405.20797}
151
+ }
152
+ ```
153
+
154
+ ## License
155
+ This project is licensed under the [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0.txt) (SPDX-License-Identifier: Apache-2.0).
156
+
157
+ ## Disclaimer
158
+ We used compliance-checking algorithms during the training process, to ensure the compliance of the trained model to the best of our ability. Due to the complexity of the data and the diversity of language model usage scenarios, we cannot guarantee that the model is completely free of copyright issues or improper content. If you believe anything infringes on your rights or generates improper content, please contact us, and we will promptly address the matter.