Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
3 |
+
datasets:
|
4 |
+
- s2orc
|
5 |
+
- flax-sentence-embeddings/stackexchange_xml
|
6 |
+
- ms_marco
|
7 |
+
- gooaq
|
8 |
+
- yahoo_answers_topics
|
9 |
+
- code_search_net
|
10 |
+
- search_qa
|
11 |
+
- eli5
|
12 |
+
- snli
|
13 |
+
- multi_nli
|
14 |
+
- wikihow
|
15 |
+
- natural_questions
|
16 |
+
- trivia_qa
|
17 |
+
- embedding-data/sentence-compression
|
18 |
+
- embedding-data/flickr30k-captions
|
19 |
+
- embedding-data/altlex
|
20 |
+
- embedding-data/simple-wiki
|
21 |
+
- embedding-data/QQP
|
22 |
+
- embedding-data/SPECTER
|
23 |
+
- embedding-data/PAQ_pairs
|
24 |
+
- embedding-data/WikiAnswers
|
25 |
+
language: en
|
26 |
+
library_name: sentence-transformers
|
27 |
+
license: apache-2.0
|
28 |
+
pipeline_tag: sentence-similarity
|
29 |
+
tags:
|
30 |
+
- sentence-transformers
|
31 |
+
- feature-extraction
|
32 |
+
- sentence-similarity
|
33 |
+
- transformers
|
34 |
+
- openvino
|
35 |
+
- nncf
|
36 |
+
- fp16
|
37 |
+
---
|
38 |
+
|
39 |
+
This model is a quantized version of [`sentence-transformers/all-MiniLM-L6-v2`](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) and is converted to the OpenVINO format. This model was obtained via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space with [optimum-intel](https://github.com/huggingface/optimum-intel).
|
40 |
+
First make sure you have `optimum-intel` installed:
|
41 |
+
```bash
|
42 |
+
pip install optimum[openvino]
|
43 |
+
```
|
44 |
+
To load your model you can do as follows:
|
45 |
+
```python
|
46 |
+
from optimum.intel import OVModelForFeatureExtraction
|
47 |
+
model_id = "AIFunOver/all-MiniLM-L6-v2-openvino-fp16"
|
48 |
+
model = OVModelForFeatureExtraction.from_pretrained(model_id)
|
49 |
+
```
|