Sephfox commited on
Commit
351f7b4
·
verified ·
1 Parent(s): 451f114

Create EVE emitonal code

Browse files
Files changed (1) hide show
  1. EVE emitonal code +408 -0
EVE emitonal code ADDED
@@ -0,0 +1,408 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import random
4
+ from sklearn.ensemble import IsolationForest
5
+ from sklearn.model_selection import train_test_split
6
+ from sklearn.preprocessing import OneHotEncoder
7
+ from sklearn.neural_network import MLPClassifier
8
+ from deap import base, creator, tools, algorithms
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.optim as optim
12
+ import torch.nn.functional as F
13
+ import datetime
14
+ import time
15
+ import threading
16
+ import logging
17
+ import multiprocessing
18
+ from collections import deque
19
+
20
+ # Logging Configuration
21
+ logging.basicConfig(filename='app.log', level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
22
+
23
+ # Memory Model
24
+ class MemoryModel:
25
+ def __init__(self, memory_file='memory.json', max_memory=1000):
26
+ self.memory_file = memory_file
27
+ self.max_memory = max_memory
28
+ self.memory = self.load_memory()
29
+
30
+ def load_memory(self):
31
+ if os.path.exists(self.memory_file):
32
+ with open(self.memory_file, 'r') as file:
33
+ return json.load(file)
34
+ return []
35
+
36
+ def save_memory(self):
37
+ with open(self.memory_file, 'w') as file:
38
+ json.dump(self.memory, file)
39
+
40
+ def add_entry(self, context, response, emotion_state, timestamp=None):
41
+ timestamp = timestamp or datetime.datetime.now().isoformat()
42
+ entry = {
43
+ 'timestamp': timestamp,
44
+ 'context': context,
45
+ 'response': response,
46
+ 'emotion_state': emotion_state
47
+ }
48
+ self.memory.append(entry)
49
+ if len(self.memory) > self.max_memory:
50
+ self.memory.pop(0) # Remove the oldest entry
51
+ self.save_memory()
52
+
53
+ def retrieve_memory(self, query, context_window=5):
54
+ relevant_entries = [entry for entry in self.memory if query.lower() in entry['context'].lower()]
55
+ if relevant_entries:
56
+ sorted_entries = sorted(relevant_entries, key=lambda x: x['timestamp'], reverse=True)
57
+ return sorted_entries[:context_window]
58
+ return None
59
+
60
+ # Temporal Awareness Module
61
+ class TemporalAwareness:
62
+ def __init__(self, context_window=5):
63
+ self.start_time = datetime.datetime.now()
64
+ self.last_event_time = None
65
+ self.event_sequence = deque(maxlen=context_window)
66
+ self.context_window = context_window
67
+
68
+ def update_event_time(self, event):
69
+ current_time = datetime.datetime.now()
70
+ if self.last_event_time:
71
+ duration = (current_time - self.last_event_time).total_seconds()
72
+ self.event_sequence.append({
73
+ 'event': event,
74
+ 'timestamp': current_time.isoformat(),
75
+ 'duration_since_last': duration
76
+ })
77
+ else:
78
+ self.event_sequence.append({
79
+ 'event': event,
80
+ 'timestamp': current_time.isoformat(),
81
+ 'duration_since_last': None
82
+ })
83
+ self.last_event_time = current_time
84
+
85
+ def estimate_duration(self, event):
86
+ recent_events = list(self.event_sequence)
87
+ durations = [
88
+ seq['duration_since_last'] for seq in recent_events if seq['event'] == event and seq['duration_since_last'] is not None
89
+ ]
90
+ return sum(durations) / len(durations) if durations else None
91
+
92
+ # HRL Neuron Class
93
+ class HRLNeuron(nn.Module):
94
+ def __init__(self, input_dim, output_dim):
95
+ super(HRLNeuron, self).__init__()
96
+ self.fc1 = nn.Linear(input_dim, 128)
97
+ self.fc2 = nn.Linear(128, output_dim)
98
+
99
+ def forward(self, x):
100
+ x = F.relu(self.fc1(x))
101
+ x = self.fc2(x)
102
+ return x
103
+
104
+ class HRLAgent:
105
+ def __init__(self, input_dim, output_dim, lr=0.001):
106
+ self.model = HRLNeuron(input_dim, output_dim)
107
+ self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
108
+ self.criterion = nn.MSELoss()
109
+
110
+ def act(self, state):
111
+ state = torch.FloatTensor(state)
112
+ q_values = self.model(state)
113
+ return q_values
114
+
115
+ def learn(self, state, action, reward, next_state, gamma=0.99):
116
+ state = torch.FloatTensor(state)
117
+ next_state = torch.FloatTensor(next_state)
118
+ reward = torch.FloatTensor([reward])
119
+ action = torch.LongTensor([action])
120
+
121
+ q_values = self.model(state)
122
+ next_q_values = self.model(next_state)
123
+ target_q_value = reward + gamma * torch.max(next_q_values)
124
+
125
+ loss = self.criterion(q_values[action], target_q_value)
126
+
127
+ self.optimizer.zero_grad()
128
+ loss.backward()
129
+ self.optimizer.step()
130
+
131
+ # Initialize Example Emotions Dataset
132
+ data = {
133
+ 'context': [
134
+ 'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
135
+ 'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
136
+ 'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
137
+ 'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
138
+ 'I am pessimistic', 'I feel bored', 'I am envious'
139
+ ],
140
+ 'emotion': [
141
+ 'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
142
+ 'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
143
+ 'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
144
+ ]
145
+ }
146
+ df = pd.DataFrame(data)
147
+
148
+ # Encoding the contexts using One-Hot Encoding
149
+ encoder = OneHotEncoder(handle_unknown='ignore')
150
+ contexts_encoded = encoder.fit_transform(df[['context']]).toarray()
151
+
152
+ # Encoding emotions
153
+ emotions_target = df['emotion'].astype('category').cat.codes
154
+ emotion_classes = df['emotion'].astype('category').cat.categories
155
+
156
+ # Train Neural Network
157
+ X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
158
+ model = MLPClassifier(hidden_layer_sizes=(10, 10), max_iter=1000, random_state=42)
159
+ model.fit(X_train, y_train)
160
+
161
+ # Isolation Forest Anomaly Detection Model
162
+ historical_data = np.array([model.predict(contexts_encoded)]).T
163
+ isolation_forest = IsolationForest(contamination=0.1, random_state=42)
164
+ isolation_forest.fit(historical_data)
165
+
166
+ # Emotional States
167
+ emotions = {
168
+ 'joy': {'percentage': 10, 'motivation': 'positive'},
169
+ 'pleasure': {'percentage': 10, 'motivation': 'selfish'},
170
+ 'sadness': {'percentage': 10, 'motivation': 'negative'},
171
+ 'grief': {'percentage': 10, 'motivation': 'negative'},
172
+ 'anger': {'percentage': 10, 'motivation': 'traumatic or strong'},
173
+ 'calmness': {'percentage': 10, 'motivation': 'neutral'},
174
+ 'determination': {'percentage': 10, 'motivation': 'positive'},
175
+ 'resentment': {'percentage': 10, 'motivation': 'negative'},
176
+ 'glory': {'percentage': 10, 'motivation': 'positive'},
177
+ 'motivation': {'percentage': 10, 'motivation': 'positive'},
178
+ 'ideal_state': {'percentage': 100, 'motivation': 'balanced'},
179
+ 'fear': {'percentage': 10, 'motivation': 'defensive'},
180
+ 'surprise': {'percentage': 10, 'motivation': 'unexpected'},
181
+ 'anticipation': {'percentage': 10, 'motivation': 'predictive'},
182
+ 'trust': {'percentage': 10, 'motivation': 'reliable'},
183
+ 'disgust': {'percentage': 10, 'motivation': 'repulsive'},
184
+ 'optimism': {'percentage': 10, 'motivation': 'hopeful'},
185
+ 'pessimism': {'percentage': 10, 'motivation': 'doubtful'},
186
+ 'boredom': {'percentage': 10, 'motivation': 'indifferent'},
187
+ 'envy': {'percentage': 10, 'motivation': 'jealous'}
188
+ }
189
+
190
+ # Adjust all emotions to a total of 200%
191
+ total_percentage = 200
192
+ default_percentage = total_percentage / len(emotions)
193
+ for emotion in emotions:
194
+ emotions[emotion]['percentage'] = default_percentage
195
+
196
+ emotion_history_file = 'emotion_history.json'
197
+
198
+ # Load historical data from file if exists
199
+ def load_historical_data(file_path=emotion_history_file):
200
+ if os.path.exists(file_path):
201
+ with open(file_path, 'r') as file:
202
+ return json.load(file)
203
+ return []
204
+
205
+ # Save historical data to file
206
+ def save_historical_data(historical_data, file_path=emotion_history_file):
207
+ with open(file_path, 'w') as file:
208
+ json.dump(historical_data, file)
209
+
210
+ # Load previous emotional states
211
+ emotion_history = load_historical_data()
212
+
213
+ # Function to update emotions
214
+ def update_emotion(emotion, percentage):
215
+ emotions['ideal_state']['percentage'] -= percentage
216
+ emotions[emotion]['percentage'] += percentage
217
+
218
+ # Ensure total percentage remains 200%
219
+ total_current = sum(e['percentage'] for e in emotions.values())
220
+ adjustment = total_percentage - total_current
221
+ emotions['ideal_state']['percentage'] += adjustment
222
+
223
+ # Function to normalize context
224
+ def normalize_context(context):
225
+ return context.lower().strip()
226
+
227
+ # Function to evolve emotions using genetic algorithm (Hyper-Evolution)
228
+ def evolve_emotions():
229
+ def evaluate(individual):
230
+ ideal_state = individual[-1]
231
+ other_emotions = individual[:-1]
232
+ return abs(ideal_state - 100), sum(other_emotions)
233
+
234
+ creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0))
235
+ creator.create("Individual", list, fitness=creator.FitnessMin)
236
+
237
+ toolbox = base.Toolbox()
238
+ toolbox.register("attribute", lambda: random.uniform(0, 20))
239
+ toolbox.register("individual", tools.initCycle, creator.Individual, toolbox.attribute, n=(len(emotions) - 1))
240
+ toolbox.register("ideal_state", lambda: random.uniform(80, 120))
241
+ toolbox.register("complete_individual", tools.initConcat, creator.Individual, toolbox.individual, toolbox.ideal_state)
242
+ toolbox.register("population", tools.initRepeat, list, toolbox.complete_individual)
243
+
244
+ toolbox.register("evaluate", evaluate)
245
+ toolbox.register("mate", tools.cxTwoPoint)
246
+ toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
247
+ toolbox.register("select", tools.selTournament, tournsize=3)
248
+
249
+ population = toolbox.population(n=100)
250
+
251
+ for gen in range(100):
252
+ offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.2)
253
+ fits = toolbox.map(toolbox.evaluate, offspring)
254
+ for fit, ind in zip(fits, offspring):
255
+ ind.fitness.values = fit
256
+ population = toolbox.select(offspring, k=len(population))
257
+
258
+ if gen % 20 == 0:
259
+ toolbox.register("mate", tools.cxBlend, alpha=random.uniform(0.1, 0.9))
260
+ toolbox.register("mutate", tools.mutPolynomialBounded, eta=random.uniform(0.5, 1.5), low=0, up=20, indpb=0.2)
261
+
262
+ best_ind = tools.selBest(population, k=1)[0]
263
+ return best_ind[:-1], best_ind[-1]
264
+
265
+ # Additional Genetic Algorithms
266
+ def evolve_language_model():
267
+ def evaluate_language(individual):
268
+ return random.random(),
269
+
270
+ creator.create("FitnessMax", base.Fitness, weights=(1.0,))
271
+ creator.create("LanguageIndividual", list, fitness=creator.FitnessMax)
272
+
273
+ toolbox = base.Toolbox()
274
+ toolbox.register("language_gene", lambda: random.randint(0, 1))
275
+ toolbox.register("language_individual", tools.initRepeat, creator.LanguageIndividual, toolbox.language_gene, n=100)
276
+ toolbox.register("language_population", tools.initRepeat, list, toolbox.language_individual)
277
+
278
+ toolbox.register("evaluate", evaluate_language)
279
+ toolbox.register("mate", tools.cxTwoPoint)
280
+ toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
281
+ toolbox.register("select", tools.selTournament, tournsize=3)
282
+
283
+ population = toolbox.language_population(n=50)
284
+
285
+ for gen in range(100):
286
+ offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
287
+ fits = toolbox.map(toolbox.evaluate, offspring)
288
+ for fit, ind in zip(fits, offspring):
289
+ ind.fitness.values = fit
290
+ population = toolbox.select(offspring, k=len(population))
291
+
292
+ best_language_model = tools.selBest(population, k=1)[0]
293
+ return best_language_model
294
+
295
+ def evolve_emotion_recognition():
296
+ def evaluate_emotion_recognition(individual):
297
+ return random.random(),
298
+
299
+ creator.create("FitnessMax", base.Fitness, weights=(1.0,))
300
+ creator.create("EmotionRecognitionIndividual", list, fitness=creator.FitnessMax)
301
+
302
+ toolbox = base.Toolbox()
303
+ toolbox.register("emotion_gene", lambda: random.randint(0, 1))
304
+ toolbox.register("emotion_individual", tools.initRepeat, creator.EmotionRecognitionIndividual, toolbox.emotion_gene, n=100)
305
+ toolbox.register("emotion_population", tools.initRepeat, list, toolbox.emotion_individual)
306
+
307
+ toolbox.register("evaluate", evaluate_emotion_recognition)
308
+ toolbox.register("mate", tools.cxTwoPoint)
309
+ toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
310
+ toolbox.register("select", tools.selTournament, tournsize=3)
311
+
312
+ population = toolbox.emotion_population(n=50)
313
+
314
+ for gen in range(100):
315
+ offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
316
+ fits = toolbox.map(toolbox.evaluate, offspring)
317
+ for fit, ind in zip(fits, offspring):
318
+ ind.fitness.values = fit
319
+ population = toolbox.select(offspring, k=len(population))
320
+
321
+ best_emotion_recognition = tools.selBest(population, k=1)[0]
322
+ return best_emotion_recognition
323
+
324
+ # Evolutionary System Implementation
325
+
326
+ DNA_LENGTH = 10 # Example DNA length
327
+ POPULATION_SIZE = 50
328
+ GENERATIONS = 100
329
+ NUM_ALGORITHMS = 3
330
+
331
+ # Define the initial DNA structure
332
+ def generate_random_dna():
333
+ return [random.uniform(0, 1) for _ in range(DNA_LENGTH)]
334
+
335
+ # Create initial populations for each algorithm
336
+ populations = [[generate_random_dna() for _ in range(POPULATION_SIZE)] for _ in range(NUM_ALGORITHMS)]
337
+
338
+ # Example Fitness Functions
339
+ def fitness_function_1(dna):
340
+ return sum(dna) # Simplistic example fitness function
341
+
342
+ def fitness_function_2(dna):
343
+ return np.prod(dna) # Simplistic example fitness function
344
+
345
+ def fitness_function_3(dna):
346
+ return np.mean(dna) # Simplistic example fitness function
347
+
348
+ fitness_functions = [fitness_function_1, fitness_function_2, fitness_function_3]
349
+
350
+ # Genetic Operators
351
+ def tournament_selection(population, fitness_fn):
352
+ tournament_size = 5
353
+ selected = random.sample(population, tournament_size)
354
+ selected.sort(key=fitness_fn, reverse=True)
355
+ return selected[0]
356
+
357
+ def crossover(parent1, parent2):
358
+ point = random.randint(0, DNA_LENGTH - 1)
359
+ child1 = parent1[:point] + parent2[point:]
360
+ child2 = parent2[:point] + parent1[point:]
361
+ return child1, child2
362
+
363
+ def mutate(dna, mutation_rate=0.01):
364
+ return [gene if random.random() > mutation_rate else random.uniform(0, 1) for gene in dna]
365
+
366
+ def evolve(population, fitness_fn, generations=GENERATIONS):
367
+ for _ in range(generations):
368
+ new_population = []
369
+ for _ in range(POPULATION_SIZE // 2):
370
+ parent1 = tournament_selection(population, fitness_fn)
371
+ parent2 = tournament_selection(population, fitness_fn)
372
+ child1, child2 = crossover(parent1, parent2)
373
+ new_population.append(mutate(child1))
374
+ new_population.append(mutate(child2))
375
+ population = sorted(new_population, key=fitness_fn, reverse=True)[:POPULATION_SIZE]
376
+ return population
377
+
378
+ # Evolve populations for each of the first three algorithms
379
+ for i in range(NUM_ALGORITHMS):
380
+ populations[i] = evolve(populations[i], fitness_functions[i])
381
+
382
+ # Combine the best individuals from each algorithm
383
+ def create_hybrid_population(populations, num_best=10):
384
+ hybrid_population = []
385
+ for pop in populations:
386
+ hybrid_population.extend(sorted(pop, key=lambda dna: sum([fn(dna) for fn in fitness_functions]), reverse=True)[:num_best])
387
+ return hybrid_population
388
+
389
+ hybrid_population = create_hybrid_population(populations)
390
+
391
+ # Example criteria evolution mechanism
392
+ def evolve_fitness_criteria(hybrid_population):
393
+ average_gene = np.mean([np.mean(dna) for dna in hybrid_population])
394
+ if average_gene > 0.5:
395
+ return lambda dna: sum(dna) * 1.1
396
+ else:
397
+ return lambda dna: sum(dna) * 0.9
398
+
399
+ # Update fitness functions based on new criteria
400
+ new_fitness_fn = evolve_fitness_criteria(hybrid_population)
401
+ fitness_functions = [new_fitness_fn] * NUM_ALGORITHMS
402
+
403
+ # Evolve the hybrid population with the new fitness criteria
404
+ hybrid_population = evolve(hybrid_population, new_fitness_fn)
405
+
406
+ # Example of usage in the system
407
+ logging.info("Initial populations evolved independently.")
408
+ logging.info("Hybrid population created and evolved with new fitness criteria.")