Create EVE emitonal code
Browse files- EVE emitonal code +408 -0
EVE emitonal code
ADDED
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import random
|
4 |
+
from sklearn.ensemble import IsolationForest
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.preprocessing import OneHotEncoder
|
7 |
+
from sklearn.neural_network import MLPClassifier
|
8 |
+
from deap import base, creator, tools, algorithms
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.optim as optim
|
12 |
+
import torch.nn.functional as F
|
13 |
+
import datetime
|
14 |
+
import time
|
15 |
+
import threading
|
16 |
+
import logging
|
17 |
+
import multiprocessing
|
18 |
+
from collections import deque
|
19 |
+
|
20 |
+
# Logging Configuration
|
21 |
+
logging.basicConfig(filename='app.log', level=logging.INFO, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
|
22 |
+
|
23 |
+
# Memory Model
|
24 |
+
class MemoryModel:
|
25 |
+
def __init__(self, memory_file='memory.json', max_memory=1000):
|
26 |
+
self.memory_file = memory_file
|
27 |
+
self.max_memory = max_memory
|
28 |
+
self.memory = self.load_memory()
|
29 |
+
|
30 |
+
def load_memory(self):
|
31 |
+
if os.path.exists(self.memory_file):
|
32 |
+
with open(self.memory_file, 'r') as file:
|
33 |
+
return json.load(file)
|
34 |
+
return []
|
35 |
+
|
36 |
+
def save_memory(self):
|
37 |
+
with open(self.memory_file, 'w') as file:
|
38 |
+
json.dump(self.memory, file)
|
39 |
+
|
40 |
+
def add_entry(self, context, response, emotion_state, timestamp=None):
|
41 |
+
timestamp = timestamp or datetime.datetime.now().isoformat()
|
42 |
+
entry = {
|
43 |
+
'timestamp': timestamp,
|
44 |
+
'context': context,
|
45 |
+
'response': response,
|
46 |
+
'emotion_state': emotion_state
|
47 |
+
}
|
48 |
+
self.memory.append(entry)
|
49 |
+
if len(self.memory) > self.max_memory:
|
50 |
+
self.memory.pop(0) # Remove the oldest entry
|
51 |
+
self.save_memory()
|
52 |
+
|
53 |
+
def retrieve_memory(self, query, context_window=5):
|
54 |
+
relevant_entries = [entry for entry in self.memory if query.lower() in entry['context'].lower()]
|
55 |
+
if relevant_entries:
|
56 |
+
sorted_entries = sorted(relevant_entries, key=lambda x: x['timestamp'], reverse=True)
|
57 |
+
return sorted_entries[:context_window]
|
58 |
+
return None
|
59 |
+
|
60 |
+
# Temporal Awareness Module
|
61 |
+
class TemporalAwareness:
|
62 |
+
def __init__(self, context_window=5):
|
63 |
+
self.start_time = datetime.datetime.now()
|
64 |
+
self.last_event_time = None
|
65 |
+
self.event_sequence = deque(maxlen=context_window)
|
66 |
+
self.context_window = context_window
|
67 |
+
|
68 |
+
def update_event_time(self, event):
|
69 |
+
current_time = datetime.datetime.now()
|
70 |
+
if self.last_event_time:
|
71 |
+
duration = (current_time - self.last_event_time).total_seconds()
|
72 |
+
self.event_sequence.append({
|
73 |
+
'event': event,
|
74 |
+
'timestamp': current_time.isoformat(),
|
75 |
+
'duration_since_last': duration
|
76 |
+
})
|
77 |
+
else:
|
78 |
+
self.event_sequence.append({
|
79 |
+
'event': event,
|
80 |
+
'timestamp': current_time.isoformat(),
|
81 |
+
'duration_since_last': None
|
82 |
+
})
|
83 |
+
self.last_event_time = current_time
|
84 |
+
|
85 |
+
def estimate_duration(self, event):
|
86 |
+
recent_events = list(self.event_sequence)
|
87 |
+
durations = [
|
88 |
+
seq['duration_since_last'] for seq in recent_events if seq['event'] == event and seq['duration_since_last'] is not None
|
89 |
+
]
|
90 |
+
return sum(durations) / len(durations) if durations else None
|
91 |
+
|
92 |
+
# HRL Neuron Class
|
93 |
+
class HRLNeuron(nn.Module):
|
94 |
+
def __init__(self, input_dim, output_dim):
|
95 |
+
super(HRLNeuron, self).__init__()
|
96 |
+
self.fc1 = nn.Linear(input_dim, 128)
|
97 |
+
self.fc2 = nn.Linear(128, output_dim)
|
98 |
+
|
99 |
+
def forward(self, x):
|
100 |
+
x = F.relu(self.fc1(x))
|
101 |
+
x = self.fc2(x)
|
102 |
+
return x
|
103 |
+
|
104 |
+
class HRLAgent:
|
105 |
+
def __init__(self, input_dim, output_dim, lr=0.001):
|
106 |
+
self.model = HRLNeuron(input_dim, output_dim)
|
107 |
+
self.optimizer = optim.Adam(self.model.parameters(), lr=lr)
|
108 |
+
self.criterion = nn.MSELoss()
|
109 |
+
|
110 |
+
def act(self, state):
|
111 |
+
state = torch.FloatTensor(state)
|
112 |
+
q_values = self.model(state)
|
113 |
+
return q_values
|
114 |
+
|
115 |
+
def learn(self, state, action, reward, next_state, gamma=0.99):
|
116 |
+
state = torch.FloatTensor(state)
|
117 |
+
next_state = torch.FloatTensor(next_state)
|
118 |
+
reward = torch.FloatTensor([reward])
|
119 |
+
action = torch.LongTensor([action])
|
120 |
+
|
121 |
+
q_values = self.model(state)
|
122 |
+
next_q_values = self.model(next_state)
|
123 |
+
target_q_value = reward + gamma * torch.max(next_q_values)
|
124 |
+
|
125 |
+
loss = self.criterion(q_values[action], target_q_value)
|
126 |
+
|
127 |
+
self.optimizer.zero_grad()
|
128 |
+
loss.backward()
|
129 |
+
self.optimizer.step()
|
130 |
+
|
131 |
+
# Initialize Example Emotions Dataset
|
132 |
+
data = {
|
133 |
+
'context': [
|
134 |
+
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
|
135 |
+
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
|
136 |
+
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
|
137 |
+
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
|
138 |
+
'I am pessimistic', 'I feel bored', 'I am envious'
|
139 |
+
],
|
140 |
+
'emotion': [
|
141 |
+
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
|
142 |
+
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
|
143 |
+
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
|
144 |
+
]
|
145 |
+
}
|
146 |
+
df = pd.DataFrame(data)
|
147 |
+
|
148 |
+
# Encoding the contexts using One-Hot Encoding
|
149 |
+
encoder = OneHotEncoder(handle_unknown='ignore')
|
150 |
+
contexts_encoded = encoder.fit_transform(df[['context']]).toarray()
|
151 |
+
|
152 |
+
# Encoding emotions
|
153 |
+
emotions_target = df['emotion'].astype('category').cat.codes
|
154 |
+
emotion_classes = df['emotion'].astype('category').cat.categories
|
155 |
+
|
156 |
+
# Train Neural Network
|
157 |
+
X_train, X_test, y_train, y_test = train_test_split(contexts_encoded, emotions_target, test_size=0.2, random_state=42)
|
158 |
+
model = MLPClassifier(hidden_layer_sizes=(10, 10), max_iter=1000, random_state=42)
|
159 |
+
model.fit(X_train, y_train)
|
160 |
+
|
161 |
+
# Isolation Forest Anomaly Detection Model
|
162 |
+
historical_data = np.array([model.predict(contexts_encoded)]).T
|
163 |
+
isolation_forest = IsolationForest(contamination=0.1, random_state=42)
|
164 |
+
isolation_forest.fit(historical_data)
|
165 |
+
|
166 |
+
# Emotional States
|
167 |
+
emotions = {
|
168 |
+
'joy': {'percentage': 10, 'motivation': 'positive'},
|
169 |
+
'pleasure': {'percentage': 10, 'motivation': 'selfish'},
|
170 |
+
'sadness': {'percentage': 10, 'motivation': 'negative'},
|
171 |
+
'grief': {'percentage': 10, 'motivation': 'negative'},
|
172 |
+
'anger': {'percentage': 10, 'motivation': 'traumatic or strong'},
|
173 |
+
'calmness': {'percentage': 10, 'motivation': 'neutral'},
|
174 |
+
'determination': {'percentage': 10, 'motivation': 'positive'},
|
175 |
+
'resentment': {'percentage': 10, 'motivation': 'negative'},
|
176 |
+
'glory': {'percentage': 10, 'motivation': 'positive'},
|
177 |
+
'motivation': {'percentage': 10, 'motivation': 'positive'},
|
178 |
+
'ideal_state': {'percentage': 100, 'motivation': 'balanced'},
|
179 |
+
'fear': {'percentage': 10, 'motivation': 'defensive'},
|
180 |
+
'surprise': {'percentage': 10, 'motivation': 'unexpected'},
|
181 |
+
'anticipation': {'percentage': 10, 'motivation': 'predictive'},
|
182 |
+
'trust': {'percentage': 10, 'motivation': 'reliable'},
|
183 |
+
'disgust': {'percentage': 10, 'motivation': 'repulsive'},
|
184 |
+
'optimism': {'percentage': 10, 'motivation': 'hopeful'},
|
185 |
+
'pessimism': {'percentage': 10, 'motivation': 'doubtful'},
|
186 |
+
'boredom': {'percentage': 10, 'motivation': 'indifferent'},
|
187 |
+
'envy': {'percentage': 10, 'motivation': 'jealous'}
|
188 |
+
}
|
189 |
+
|
190 |
+
# Adjust all emotions to a total of 200%
|
191 |
+
total_percentage = 200
|
192 |
+
default_percentage = total_percentage / len(emotions)
|
193 |
+
for emotion in emotions:
|
194 |
+
emotions[emotion]['percentage'] = default_percentage
|
195 |
+
|
196 |
+
emotion_history_file = 'emotion_history.json'
|
197 |
+
|
198 |
+
# Load historical data from file if exists
|
199 |
+
def load_historical_data(file_path=emotion_history_file):
|
200 |
+
if os.path.exists(file_path):
|
201 |
+
with open(file_path, 'r') as file:
|
202 |
+
return json.load(file)
|
203 |
+
return []
|
204 |
+
|
205 |
+
# Save historical data to file
|
206 |
+
def save_historical_data(historical_data, file_path=emotion_history_file):
|
207 |
+
with open(file_path, 'w') as file:
|
208 |
+
json.dump(historical_data, file)
|
209 |
+
|
210 |
+
# Load previous emotional states
|
211 |
+
emotion_history = load_historical_data()
|
212 |
+
|
213 |
+
# Function to update emotions
|
214 |
+
def update_emotion(emotion, percentage):
|
215 |
+
emotions['ideal_state']['percentage'] -= percentage
|
216 |
+
emotions[emotion]['percentage'] += percentage
|
217 |
+
|
218 |
+
# Ensure total percentage remains 200%
|
219 |
+
total_current = sum(e['percentage'] for e in emotions.values())
|
220 |
+
adjustment = total_percentage - total_current
|
221 |
+
emotions['ideal_state']['percentage'] += adjustment
|
222 |
+
|
223 |
+
# Function to normalize context
|
224 |
+
def normalize_context(context):
|
225 |
+
return context.lower().strip()
|
226 |
+
|
227 |
+
# Function to evolve emotions using genetic algorithm (Hyper-Evolution)
|
228 |
+
def evolve_emotions():
|
229 |
+
def evaluate(individual):
|
230 |
+
ideal_state = individual[-1]
|
231 |
+
other_emotions = individual[:-1]
|
232 |
+
return abs(ideal_state - 100), sum(other_emotions)
|
233 |
+
|
234 |
+
creator.create("FitnessMin", base.Fitness, weights=(-1.0, -1.0))
|
235 |
+
creator.create("Individual", list, fitness=creator.FitnessMin)
|
236 |
+
|
237 |
+
toolbox = base.Toolbox()
|
238 |
+
toolbox.register("attribute", lambda: random.uniform(0, 20))
|
239 |
+
toolbox.register("individual", tools.initCycle, creator.Individual, toolbox.attribute, n=(len(emotions) - 1))
|
240 |
+
toolbox.register("ideal_state", lambda: random.uniform(80, 120))
|
241 |
+
toolbox.register("complete_individual", tools.initConcat, creator.Individual, toolbox.individual, toolbox.ideal_state)
|
242 |
+
toolbox.register("population", tools.initRepeat, list, toolbox.complete_individual)
|
243 |
+
|
244 |
+
toolbox.register("evaluate", evaluate)
|
245 |
+
toolbox.register("mate", tools.cxTwoPoint)
|
246 |
+
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
|
247 |
+
toolbox.register("select", tools.selTournament, tournsize=3)
|
248 |
+
|
249 |
+
population = toolbox.population(n=100)
|
250 |
+
|
251 |
+
for gen in range(100):
|
252 |
+
offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.2)
|
253 |
+
fits = toolbox.map(toolbox.evaluate, offspring)
|
254 |
+
for fit, ind in zip(fits, offspring):
|
255 |
+
ind.fitness.values = fit
|
256 |
+
population = toolbox.select(offspring, k=len(population))
|
257 |
+
|
258 |
+
if gen % 20 == 0:
|
259 |
+
toolbox.register("mate", tools.cxBlend, alpha=random.uniform(0.1, 0.9))
|
260 |
+
toolbox.register("mutate", tools.mutPolynomialBounded, eta=random.uniform(0.5, 1.5), low=0, up=20, indpb=0.2)
|
261 |
+
|
262 |
+
best_ind = tools.selBest(population, k=1)[0]
|
263 |
+
return best_ind[:-1], best_ind[-1]
|
264 |
+
|
265 |
+
# Additional Genetic Algorithms
|
266 |
+
def evolve_language_model():
|
267 |
+
def evaluate_language(individual):
|
268 |
+
return random.random(),
|
269 |
+
|
270 |
+
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
|
271 |
+
creator.create("LanguageIndividual", list, fitness=creator.FitnessMax)
|
272 |
+
|
273 |
+
toolbox = base.Toolbox()
|
274 |
+
toolbox.register("language_gene", lambda: random.randint(0, 1))
|
275 |
+
toolbox.register("language_individual", tools.initRepeat, creator.LanguageIndividual, toolbox.language_gene, n=100)
|
276 |
+
toolbox.register("language_population", tools.initRepeat, list, toolbox.language_individual)
|
277 |
+
|
278 |
+
toolbox.register("evaluate", evaluate_language)
|
279 |
+
toolbox.register("mate", tools.cxTwoPoint)
|
280 |
+
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
|
281 |
+
toolbox.register("select", tools.selTournament, tournsize=3)
|
282 |
+
|
283 |
+
population = toolbox.language_population(n=50)
|
284 |
+
|
285 |
+
for gen in range(100):
|
286 |
+
offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
|
287 |
+
fits = toolbox.map(toolbox.evaluate, offspring)
|
288 |
+
for fit, ind in zip(fits, offspring):
|
289 |
+
ind.fitness.values = fit
|
290 |
+
population = toolbox.select(offspring, k=len(population))
|
291 |
+
|
292 |
+
best_language_model = tools.selBest(population, k=1)[0]
|
293 |
+
return best_language_model
|
294 |
+
|
295 |
+
def evolve_emotion_recognition():
|
296 |
+
def evaluate_emotion_recognition(individual):
|
297 |
+
return random.random(),
|
298 |
+
|
299 |
+
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
|
300 |
+
creator.create("EmotionRecognitionIndividual", list, fitness=creator.FitnessMax)
|
301 |
+
|
302 |
+
toolbox = base.Toolbox()
|
303 |
+
toolbox.register("emotion_gene", lambda: random.randint(0, 1))
|
304 |
+
toolbox.register("emotion_individual", tools.initRepeat, creator.EmotionRecognitionIndividual, toolbox.emotion_gene, n=100)
|
305 |
+
toolbox.register("emotion_population", tools.initRepeat, list, toolbox.emotion_individual)
|
306 |
+
|
307 |
+
toolbox.register("evaluate", evaluate_emotion_recognition)
|
308 |
+
toolbox.register("mate", tools.cxTwoPoint)
|
309 |
+
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
|
310 |
+
toolbox.register("select", tools.selTournament, tournsize=3)
|
311 |
+
|
312 |
+
population = toolbox.emotion_population(n=50)
|
313 |
+
|
314 |
+
for gen in range(100):
|
315 |
+
offspring = algorithms.varAnd(population, toolbox, cxpb=0.5, mutpb=0.1)
|
316 |
+
fits = toolbox.map(toolbox.evaluate, offspring)
|
317 |
+
for fit, ind in zip(fits, offspring):
|
318 |
+
ind.fitness.values = fit
|
319 |
+
population = toolbox.select(offspring, k=len(population))
|
320 |
+
|
321 |
+
best_emotion_recognition = tools.selBest(population, k=1)[0]
|
322 |
+
return best_emotion_recognition
|
323 |
+
|
324 |
+
# Evolutionary System Implementation
|
325 |
+
|
326 |
+
DNA_LENGTH = 10 # Example DNA length
|
327 |
+
POPULATION_SIZE = 50
|
328 |
+
GENERATIONS = 100
|
329 |
+
NUM_ALGORITHMS = 3
|
330 |
+
|
331 |
+
# Define the initial DNA structure
|
332 |
+
def generate_random_dna():
|
333 |
+
return [random.uniform(0, 1) for _ in range(DNA_LENGTH)]
|
334 |
+
|
335 |
+
# Create initial populations for each algorithm
|
336 |
+
populations = [[generate_random_dna() for _ in range(POPULATION_SIZE)] for _ in range(NUM_ALGORITHMS)]
|
337 |
+
|
338 |
+
# Example Fitness Functions
|
339 |
+
def fitness_function_1(dna):
|
340 |
+
return sum(dna) # Simplistic example fitness function
|
341 |
+
|
342 |
+
def fitness_function_2(dna):
|
343 |
+
return np.prod(dna) # Simplistic example fitness function
|
344 |
+
|
345 |
+
def fitness_function_3(dna):
|
346 |
+
return np.mean(dna) # Simplistic example fitness function
|
347 |
+
|
348 |
+
fitness_functions = [fitness_function_1, fitness_function_2, fitness_function_3]
|
349 |
+
|
350 |
+
# Genetic Operators
|
351 |
+
def tournament_selection(population, fitness_fn):
|
352 |
+
tournament_size = 5
|
353 |
+
selected = random.sample(population, tournament_size)
|
354 |
+
selected.sort(key=fitness_fn, reverse=True)
|
355 |
+
return selected[0]
|
356 |
+
|
357 |
+
def crossover(parent1, parent2):
|
358 |
+
point = random.randint(0, DNA_LENGTH - 1)
|
359 |
+
child1 = parent1[:point] + parent2[point:]
|
360 |
+
child2 = parent2[:point] + parent1[point:]
|
361 |
+
return child1, child2
|
362 |
+
|
363 |
+
def mutate(dna, mutation_rate=0.01):
|
364 |
+
return [gene if random.random() > mutation_rate else random.uniform(0, 1) for gene in dna]
|
365 |
+
|
366 |
+
def evolve(population, fitness_fn, generations=GENERATIONS):
|
367 |
+
for _ in range(generations):
|
368 |
+
new_population = []
|
369 |
+
for _ in range(POPULATION_SIZE // 2):
|
370 |
+
parent1 = tournament_selection(population, fitness_fn)
|
371 |
+
parent2 = tournament_selection(population, fitness_fn)
|
372 |
+
child1, child2 = crossover(parent1, parent2)
|
373 |
+
new_population.append(mutate(child1))
|
374 |
+
new_population.append(mutate(child2))
|
375 |
+
population = sorted(new_population, key=fitness_fn, reverse=True)[:POPULATION_SIZE]
|
376 |
+
return population
|
377 |
+
|
378 |
+
# Evolve populations for each of the first three algorithms
|
379 |
+
for i in range(NUM_ALGORITHMS):
|
380 |
+
populations[i] = evolve(populations[i], fitness_functions[i])
|
381 |
+
|
382 |
+
# Combine the best individuals from each algorithm
|
383 |
+
def create_hybrid_population(populations, num_best=10):
|
384 |
+
hybrid_population = []
|
385 |
+
for pop in populations:
|
386 |
+
hybrid_population.extend(sorted(pop, key=lambda dna: sum([fn(dna) for fn in fitness_functions]), reverse=True)[:num_best])
|
387 |
+
return hybrid_population
|
388 |
+
|
389 |
+
hybrid_population = create_hybrid_population(populations)
|
390 |
+
|
391 |
+
# Example criteria evolution mechanism
|
392 |
+
def evolve_fitness_criteria(hybrid_population):
|
393 |
+
average_gene = np.mean([np.mean(dna) for dna in hybrid_population])
|
394 |
+
if average_gene > 0.5:
|
395 |
+
return lambda dna: sum(dna) * 1.1
|
396 |
+
else:
|
397 |
+
return lambda dna: sum(dna) * 0.9
|
398 |
+
|
399 |
+
# Update fitness functions based on new criteria
|
400 |
+
new_fitness_fn = evolve_fitness_criteria(hybrid_population)
|
401 |
+
fitness_functions = [new_fitness_fn] * NUM_ALGORITHMS
|
402 |
+
|
403 |
+
# Evolve the hybrid population with the new fitness criteria
|
404 |
+
hybrid_population = evolve(hybrid_population, new_fitness_fn)
|
405 |
+
|
406 |
+
# Example of usage in the system
|
407 |
+
logging.info("Initial populations evolved independently.")
|
408 |
+
logging.info("Hybrid population created and evolved with new fitness criteria.")
|