File size: 1,504 Bytes
1c24a2b
 
722902f
 
1c24a2b
ac08d0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cd8613
 
d041b8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac08d0c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
license: apache-2.0
library_name: peft
base_model: unsloth/mistral-7b
---
LoRA Adapter for RBI Notifications Dataset

## Directions for Usage

```python

!pip install "unsloth[colab_ampere] @ git+https://github.com/unslothai/unsloth.git"
!pip install "git+https://github.com/huggingface/transformers.git"

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM

config = PeftConfig.from_pretrained("AISimplyExplained/RBI-Notif64")
model = AutoModelForCausalLM.from_pretrained("unsloth/mistral-7b-bnb-4bit")
model = PeftModel.from_pretrained(model, "AISimplyExplained/RBI-Notif64")
tokenizer= AutoTokenizer.from_pretrained("unsloth/mistral-7b-bnb-4bit")

alpaca_prompt = """Below is an instruction. Write a response that appropriately completes the request.
### Instruction:
{}

### Response:
{}"""


def formatting_prompts_func(examples):

    inputs       = examples["input"]
    outputs      = examples["output"]
    texts = []
    for input, output in zip(inputs, outputs):
        text = alpaca_prompt.format(input, output)
        texts.append(text)
    return { "text" : texts, }


inputs = tokenizer(
  [
      alpaca_prompt.format(
          f'''What is the reference for the procedure to be followed by RRBs for implementation of Section 51A of UAPA, 1967?
''',
          "",
      )
  ]*1, return_tensors = "pt").to("cuda")

outputs = model.generate(**inputs, max_new_tokens = 128, use_cache = True)
output=tokenizer.batch_decode(outputs)[0]
print(output)

```