--- license: apache-2.0 library_name: peft base_model: unsloth/mistral-7b --- LoRA Adapter for RBI Notifications Dataset ## Directions for Usage ```python !pip install "unsloth[colab_ampere] @ git+https://github.com/unslothai/unsloth.git" !pip install "git+https://github.com/huggingface/transformers.git" from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM config = PeftConfig.from_pretrained("AISimplyExplained/RBI-Notif64") model = AutoModelForCausalLM.from_pretrained("unsloth/mistral-7b-bnb-4bit") model = PeftModel.from_pretrained(model, "AISimplyExplained/RBI-Notif64") tokenizer= AutoTokenizer.from_pretrained("unsloth/mistral-7b-bnb-4bit") alpaca_prompt = """Below is an instruction. Write a response that appropriately completes the request. ### Instruction: {} ### Response: {}""" def formatting_prompts_func(examples): inputs = examples["input"] outputs = examples["output"] texts = [] for input, output in zip(inputs, outputs): text = alpaca_prompt.format(input, output) texts.append(text) return { "text" : texts, } inputs = tokenizer( [ alpaca_prompt.format( f'''What is the reference for the procedure to be followed by RRBs for implementation of Section 51A of UAPA, 1967? ''', "", ) ]*1, return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 128, use_cache = True) output=tokenizer.batch_decode(outputs)[0] print(output) ```