update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: microsoft/beit-large-patch16-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: beit-large-patch16-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# beit-large-patch16-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0487
|
21 |
+
- Accuracy: 0.9893
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-06
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 16
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.9
|
49 |
+
- num_epochs: 12
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 2.1055 | 1.0 | 114 | 2.0091 | 0.1601 |
|
56 |
+
| 1.6582 | 2.0 | 229 | 1.5953 | 0.4187 |
|
57 |
+
| 1.2399 | 3.0 | 343 | 1.1053 | 0.5977 |
|
58 |
+
| 0.8417 | 4.0 | 458 | 0.7602 | 0.7241 |
|
59 |
+
| 0.5517 | 5.0 | 572 | 0.5651 | 0.8013 |
|
60 |
+
| 0.5777 | 6.0 | 687 | 0.3980 | 0.8768 |
|
61 |
+
| 0.408 | 7.0 | 801 | 0.2912 | 0.9154 |
|
62 |
+
| 0.2395 | 8.0 | 916 | 0.2185 | 0.9417 |
|
63 |
+
| 0.3613 | 9.0 | 1030 | 0.1753 | 0.9475 |
|
64 |
+
| 0.2408 | 10.0 | 1145 | 0.1353 | 0.9614 |
|
65 |
+
| 0.2777 | 11.0 | 1259 | 0.0699 | 0.9860 |
|
66 |
+
| 0.1528 | 11.95 | 1368 | 0.0487 | 0.9893 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.31.0
|
72 |
+
- Pytorch 2.0.1+cu118
|
73 |
+
- Datasets 2.13.1
|
74 |
+
- Tokenizers 0.13.3
|