ALM-AHME commited on
Commit
d6a8b92
1 Parent(s): 88d376b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/beit-large-patch16-224
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: beit-large-patch16-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # beit-large-patch16-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled
17
+
18
+ This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0487
21
+ - Accuracy: 0.9893
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-06
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 16
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 2
45
+ - total_train_batch_size: 32
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_ratio: 0.9
49
+ - num_epochs: 12
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 2.1055 | 1.0 | 114 | 2.0091 | 0.1601 |
56
+ | 1.6582 | 2.0 | 229 | 1.5953 | 0.4187 |
57
+ | 1.2399 | 3.0 | 343 | 1.1053 | 0.5977 |
58
+ | 0.8417 | 4.0 | 458 | 0.7602 | 0.7241 |
59
+ | 0.5517 | 5.0 | 572 | 0.5651 | 0.8013 |
60
+ | 0.5777 | 6.0 | 687 | 0.3980 | 0.8768 |
61
+ | 0.408 | 7.0 | 801 | 0.2912 | 0.9154 |
62
+ | 0.2395 | 8.0 | 916 | 0.2185 | 0.9417 |
63
+ | 0.3613 | 9.0 | 1030 | 0.1753 | 0.9475 |
64
+ | 0.2408 | 10.0 | 1145 | 0.1353 | 0.9614 |
65
+ | 0.2777 | 11.0 | 1259 | 0.0699 | 0.9860 |
66
+ | 0.1528 | 11.95 | 1368 | 0.0487 | 0.9893 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.31.0
72
+ - Pytorch 2.0.1+cu118
73
+ - Datasets 2.13.1
74
+ - Tokenizers 0.13.3