ALM-AHME commited on
Commit
3726421
·
1 Parent(s): 747d68c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +18 -15
README.md CHANGED
@@ -17,8 +17,8 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [facebook/convnextv2-large-1k-224](https://huggingface.co/facebook/convnextv2-large-1k-224) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.0946
21
- - Accuracy: 0.9852
22
 
23
  ## Model description
24
 
@@ -46,24 +46,27 @@ The following hyperparameters were used during training:
46
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
  - lr_scheduler_type: linear
48
  - lr_scheduler_warmup_ratio: 0.9
49
- - num_epochs: 12
50
 
51
  ### Training results
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
- | 1.9014 | 1.0 | 114 | 1.8872 | 0.3982 |
56
- | 1.6303 | 2.0 | 229 | 1.6163 | 0.5928 |
57
- | 1.291 | 3.0 | 343 | 1.2220 | 0.6773 |
58
- | 1.0813 | 4.0 | 458 | 0.9574 | 0.7750 |
59
- | 0.7168 | 5.0 | 572 | 0.7792 | 0.7603 |
60
- | 0.6184 | 6.0 | 687 | 0.5539 | 0.8678 |
61
- | 0.677 | 7.0 | 801 | 0.4482 | 0.8727 |
62
- | 0.4876 | 8.0 | 916 | 0.3289 | 0.9269 |
63
- | 0.4 | 9.0 | 1030 | 0.2379 | 0.9499 |
64
- | 0.4122 | 10.0 | 1145 | 0.2452 | 0.9351 |
65
- | 0.4494 | 11.0 | 1259 | 0.1790 | 0.9581 |
66
- | 0.2026 | 11.95 | 1368 | 0.0946 | 0.9852 |
 
 
 
67
 
68
 
69
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [facebook/convnextv2-large-1k-224](https://huggingface.co/facebook/convnextv2-large-1k-224) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.0721
21
+ - Accuracy: 0.9869
22
 
23
  ## Model description
24
 
 
46
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
  - lr_scheduler_type: linear
48
  - lr_scheduler_warmup_ratio: 0.9
49
+ - num_epochs: 15
50
 
51
  ### Training results
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | 1.8937 | 1.0 | 114 | 1.9040 | 0.3144 |
56
+ | 1.7208 | 2.0 | 229 | 1.6891 | 0.5632 |
57
+ | 1.3822 | 3.0 | 343 | 1.3554 | 0.6897 |
58
+ | 1.1497 | 4.0 | 458 | 1.2437 | 0.5755 |
59
+ | 0.8979 | 5.0 | 572 | 0.8548 | 0.7701 |
60
+ | 0.6382 | 6.0 | 687 | 0.6359 | 0.8424 |
61
+ | 0.583 | 7.0 | 801 | 0.4687 | 0.8966 |
62
+ | 0.6295 | 8.0 | 916 | 0.5029 | 0.8456 |
63
+ | 0.5367 | 9.0 | 1030 | 0.4742 | 0.8670 |
64
+ | 0.5091 | 10.0 | 1145 | 0.3038 | 0.9212 |
65
+ | 0.3521 | 11.0 | 1259 | 0.1855 | 0.9606 |
66
+ | 0.318 | 12.0 | 1374 | 0.1893 | 0.9573 |
67
+ | 0.2725 | 13.0 | 1488 | 0.2292 | 0.9409 |
68
+ | 0.2937 | 14.0 | 1603 | 0.0866 | 0.9836 |
69
+ | 0.1185 | 14.93 | 1710 | 0.0721 | 0.9869 |
70
 
71
 
72
  ### Framework versions