--- language: - el license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Medium Greek - Robust results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 el type: mozilla-foundation/common_voice_11_0 config: el split: test args: el metrics: - type: wer value: 17.709881129271917 name: Wer - type: wer value: 13.25 name: WER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: el_gr split: test metrics: - type: wer value: 39.59 name: WER --- # Whisper Medium Greek - Robust This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 el dataset. It achieves the following results on the evaluation set: - Loss: 0.2807 - Wer: 17.7099 **IMPORTANT** The model has been trained using *data augmentation* to improve its generalization capabilities and robustness. The results on the eval set during training are biased towards data augmentation applied to evaluation data. **Results on eval set** - Mozilla CV 11.0 - Greek: 13.250 WER (using official script) - Google Fluers - Greek: 39.59 WER (using official script) ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.0407 | 4.69 | 2000 | 0.2484 | 20.8767 | | 0.0128 | 9.39 | 4000 | 0.2795 | 21.2017 | | 0.0041 | 14.08 | 6000 | 0.2744 | 19.1308 | | 0.0017 | 18.78 | 8000 | 0.2759 | 17.9978 | | 0.0005 | 23.47 | 10000 | 0.2751 | 18.5457 | | 0.0015 | 28.17 | 12000 | 0.2928 | 19.2051 | | 0.0004 | 32.86 | 14000 | 0.2819 | 18.2857 | | 0.0002 | 37.56 | 16000 | 0.2831 | 17.7285 | | 0.0007 | 42.25 | 18000 | 0.2776 | 17.8399 | | 0.0 | 46.95 | 20000 | 0.2792 | 17.0970 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.11.0+cu113 - Datasets 2.7.1 - Tokenizers 0.12.1